Let P be a graph property and r,s ∈ N, r ≥ s. A strong circular (P,r,s)-colouring of a graph G is an assignment f:V(G) → {0,1,...,r-1}, such that the edges uv ∈ E(G) satisfying |f(u)-f(v)| < s or |f(u)-f(v)| > r - s, induce a subgraph of G with the propery P. In this paper we present some basic results on strong circular (P,r,s)-colourings. We introduce the strong circular P-chromatic number of a graph and we determine the strong circular P-chromatic number of complete graphs for additive and hereditary graph properties.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1550, author = {Peter Mih\'ok and Janka Oravcov\'a and Roman Sot\'ak}, title = {Generalized circular colouring of graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {31}, year = {2011}, pages = {345-356}, zbl = {1234.05097}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1550} }
Peter Mihók; Janka Oravcová; Roman Soták. Generalized circular colouring of graphs. Discussiones Mathematicae Graph Theory, Tome 31 (2011) pp. 345-356. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1550/
[000] [1] J.A. Bondy and P. Hell, A Note on the Star Chromatic Number, J. Graph Theory 14 (1990) 479-482, doi: 10.1002/jgt.3190140412. | Zbl 0706.05022
[001] [2] O. Borodin, On acyclic colouring of planar graphs, Discrete Math. 25 (1979) 211-236, doi: 10.1016/0012-365X(79)90077-3. | Zbl 0406.05031
[002] [3] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, editor, Advances in Graph Theory (Vishwa International Publishers, 1991) 42-69.
[003] [4] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037. | Zbl 0902.05026
[004] [5] W. Klostermeyer, Defective circular coloring, Austr. J. Combinatorics 26 (2002) 21-32. | Zbl 1009.05061
[005] [6] P. Mihók, On the lattice of additive hereditary properties of object systems, Tatra Mt. Math. Publ. 30 (2005) 155-161. | Zbl 1150.05394
[006] [7] P. Mihók, Zs. Tuza and M. Voigt, Fractional P-colourings and P-choice ratio, Tatra Mt. Math. Publ. 18 (1999) 69-77.
[007] [8] A. Vince, Star chromatic number, J. Graph Theory 12 (1988) 551-559. | Zbl 0658.05028