A vertex is said to be doubly light in a family of plane graphs if its degree and sizes of neighbouring faces are bounded above by a finite constant. We provide several results on the existence of doubly light vertices in various families of plane graph.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1549, author = {Veronika Koz\'akov\'a and Tom\'a\v s Madaras}, title = {On doubly light vertices in plane graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {31}, year = {2011}, pages = {333-344}, zbl = {1227.05132}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1549} }
Veronika Kozáková; Tomáš Madaras. On doubly light vertices in plane graphs. Discussiones Mathematicae Graph Theory, Tome 31 (2011) pp. 333-344. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1549/
[000] [1] O.V. Borodin, Solution of Kotzig-Grünbaum problems on separation of a cycle in planar graphs, Mat. Zametki 46 (1989) 9-12 (in Russian). | Zbl 0694.05027
[001] [2] O.V. Borodin, Sharpening Lebesgue's theorem on the structure of lowest faces of convex polytopes, Diskretn. Anal. Issled. Oper., Ser. 1 9, No. 3 (2002) 29-39 (in Russian). | Zbl 1015.52008
[002] [3] H. Lebesgue, Quelques consequences simples de la formule d'Euler, J. Math. Pures Appl. 19 (1940) 19-43. | Zbl 0024.28701
[003] [4] P. Wernicke, Über den kartographischen Vierfarbensatz, Math. Ann. 58 (1904) 413-426, doi: 10.1007/BF01444968. | Zbl 35.0511.01
[004] [5] R. Radoicic and G. Tóth, The discharging method in combinatorial geometry and the Pach-Sharir conjecture, Contemp. Math. 453 (2008) 319-342, doi: 10.1090/conm/453/08806. | Zbl 1152.05025