If G is a bridgeless cubic graph, Fulkerson conjectured that we can find 6 perfect matchings (a Fulkerson covering) with the property that every edge of G is contained in exactly two of them. A consequence of the Fulkerson conjecture would be that every bridgeless cubic graph has 3 perfect matchings with empty intersection (this problem is known as the Fan Raspaud Conjecture). A FR-triple is a set of 3 such perfect matchings. We show here how to derive a Fulkerson covering from two FR-triples. Moreover, we give a simple proof that the Fulkerson conjecture holds true for some classes of well known snarks.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1543, author = {Jean-Luc Fouquet and Jean-Marie Vanherpe}, title = {On Fulkerson conjecture}, journal = {Discussiones Mathematicae Graph Theory}, volume = {31}, year = {2011}, pages = {253-272}, zbl = {1234.05185}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1543} }
Jean-Luc Fouquet; Jean-Marie Vanherpe. On Fulkerson conjecture. Discussiones Mathematicae Graph Theory, Tome 31 (2011) pp. 253-272. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1543/
[000] [1] V. Chvátal, Flip-Flops on hypohamiltonian graphs, Canad. Math. Bull. 16 (1973) 33-41, doi: 10.4153/CMB-1973-008-9. | Zbl 0253.05142
[001] [2] G. Fan and A. Raspaud, Fulkerson's Conjecture and Circuit Covers, J. Combin. Theory (B) 61 (1994) 133-138, doi: 10.1006/jctb.1994.1039. | Zbl 0811.05053
[002] [3] J.L. Fouquet and J.M. Vanherpe, On parsimonious edge-colouring of graphs with maximum degree three, Tech. report, LIFO, 2009. | Zbl 1267.05117
[003] [4] D.R. Fulkerson, Blocking and anti-blocking pairs of polyhedra, Math. Programming 1 (1971) 168-194, doi: 10.1007/BF01584085. | Zbl 0254.90054
[004] [5] M.K. Goldberg, Construction of class 2 graphs with maximum vertex degree 3, J. Combin. Theory (B) 31 (1981) 282-291, doi: 10.1016/0095-8956(81)90030-7. | Zbl 0449.05037
[005] [6] R. Isaacs, Infinite families of non-trivial trivalent graphs which are not Tait colorable, Am. Math. Monthly 82 (1975) 221-239, doi: 10.2307/2319844. | Zbl 0311.05109
[006] [7] R. Rizzi, Indecomposable r-graphs and some other counterexamples, J. Graph Theory 32 (1999) 1-15, doi: 10.1002/(SICI)1097-0118(199909)32:1<1::AID-JGT1>3.0.CO;2-B | Zbl 0932.05072
[007] [8] Z. Skupień Exponentially many hypohamiltonian graphs, Graphs, Hypergraphs and Matroids III (M. Borowiecki and Z. Skupień, eds.) Proc. Conf. Kalsk, 1988, Higher College of Enginering, Zielona Góra, 1989, pp. 123-132.
[008] [9] J.J. Watkins, Snarks, Graph Theory and Its Applications: East and West (Jinan, 1986), Ann. New York Acad. Sci. vol. 576, New York Acad. Sci. (New York, 1989) pp. 606-622.
[009] [10] R. Hao, J. Niu, X. Wang, C.-Q. Zhang and T. Zhang, A note on Berge-Fulkerson coloring, Discrete Math. 309 (2009) 4235-4240, doi: 10.1016/j.disc.2008.12.024. | Zbl 1209.05084