The crossing numbers of Cartesian products of paths, cycles or stars with all graphs of order at most four are known. The crossing numbers of G☐Cₙ for some graphs G on five and six vertices and the cycle Cₙ are also given. In this paper, we extend these results by determining crossing numbers of Cartesian products G☐Cₙ for some connected graphs G of order six with six and seven edges. In addition, we collect known results concerning crossing numbers of G☐Cₙ for graphs G on six vertices.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1542, author = {Em\'\i lia Dra\v zensk\'a and Mari\'an Kle\v s\v c}, title = {On the crossing numbers of G \# Cn for graphs G on six vertices}, journal = {Discussiones Mathematicae Graph Theory}, volume = {31}, year = {2011}, pages = {239-252}, zbl = {1234.05066}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1542} }
Emília Draženská; Marián Klešč. On the crossing numbers of G □ Cₙ for graphs G on six vertices. Discussiones Mathematicae Graph Theory, Tome 31 (2011) pp. 239-252. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1542/
[000] [1] M. Anderson, R.B. Richter and P. Rodney, The crossing number of C₆×C₆, Congr. Numer. 118 (1996) 97-107. | Zbl 0896.05032
[001] [2] L.W. Beineke and R.D. Ringeisen, On the crossing numbers of products of cycles and graphs of order four, J. Graph Theory 4 (1980) 145-155, doi: 10.1002/jgt.3190040203. | Zbl 0403.05037
[002] [3] A.M. Dean and R.B. Richter, The crossing number of C₄×C₄, J. Graph Theory 19 (1995) 125-129, doi: 10.1002/jgt.3190190113. | Zbl 0813.05018
[003] [4] E. Draženská and M. Klešč, The crossing numbers of products of cycles with 6-vertex trees, Tatra Mt. Math. Publ. 36 (2007) 109-119. | Zbl 1175.05040
[004] [5] E. Draženská, The crossing numbers of G☐Cₙ for the graph G on six vertices, Mathematica Slovaca (to appear). | Zbl 1274.05091
[005] [6] L.Y. Glebsky and G. Salazar, The crossing number of Cₘ×Cₙ is as conjectured for n ≥ m(m+1), J. Graph Theory 47 (2004) 53-72, doi: 10.1002/jgt.20016. | Zbl 1053.05032
[006] [7] F. Harary, P.C. Kainen and A.J. Schwenk, Toroidal graphs with arbitrarily high crossing numbers, Nanta Math. 6 (1973) 58-67. | Zbl 0285.05104
[007] [8] S. Jendrol' and M. Scerbová, On the crossing numbers of Sₘ×Pₙ and Sₘ×Cₙ, Casopis pro pestování matematiky 107 (1982) 225-230.
[008] [9] M. Klešč, On the crossing numbers of Cartesian products of stars and paths or cycles, Mathematica Slovaca 41 (1991) 113-120. | Zbl 0755.05067
[009] [10] M. Klešč, The crossing numbers of Cartesian products of paths with 5-vertex graphs, Discrete Math. 233 (2001) 353-359, doi: 10.1016/S0012-365X(00)00251-X. | Zbl 0983.05027
[010] [11] M. Klešč, The crossing number of , Discrete Math. 251 (2002) 109-117, doi: 10.1016/S0012-365X(01)00332-6.
[011] [12] M. Klešč, Some crossing numbers of products of cycles, Discuss. Math. Graph Theory 25 (2005) 197-210, doi: 10.7151/dmgt.1272. | Zbl 1078.05025
[012] [13] M. Klešč, R.B. Richter and I. Stobert, The crossing number of C₅×Cₙ, J. Graph Theory 22 (1996) 239-243. | Zbl 0854.05036
[013] [14] M. Klešč and A. Kocúrová, The crossing numbers of products of 5-vertex graphs with cycles, Discrete Math. 307 (2007) 1395-1403, doi: 10.1016/j.disc.2005.11.077. | Zbl 1118.05021
[014] [15] R.B. Richter and C. Thomassen, Intersection of curve systems and the crossing number of C₅×C₅, Discrete Comp. Geom. 13 (1995) 149-159, doi: 10.1007/BF02574034. | Zbl 0820.05015
[015] [16] R.B. Richter and G. Salazar, The crossing number of C₆×Cₙ, Australasian J. Combin. 23 (2001) 135-144. | Zbl 0972.05015
[016] [17] R D. Ringeisen and L.W. Beineke, The crossing number of C₃×Cₙ, J. Combin. Theory (B) 24 (1978) 134-136, doi: 10.1016/0095-8956(78)90014-X. | Zbl 0383.05015
[017] [18] W. Zheng, X. Lin, Y. Yang and C. Deng, On the crossing number of Kₘ ☐ Cₙ and , Discrete Appl. Math. 156 (2008) 1892-1907.