A characterization of locating-total domination edge critical graphs
Mostafa Blidia ; Widad Dali
Discussiones Mathematicae Graph Theory, Tome 31 (2011), p. 197-202 / Harvested from The Polish Digital Mathematics Library

For a graph G = (V,E) without isolated vertices, a subset D of vertices of V is a total dominating set (TDS) of G if every vertex in V is adjacent to a vertex in D. The total domination number γₜ(G) is the minimum cardinality of a TDS of G. A subset D of V which is a total dominating set, is a locating-total dominating set, or just a LTDS of G, if for any two distinct vertices u and v of V(G)∖D, NG(u)DNG(v)D. The locating-total domination number γLt(G) is the minimum cardinality of a locating-total dominating set of G. A graph G is said to be a locating-total domination edge removal critical graph, or just a γLt+-ER-critical graph, if γLt(G-e)>γLt(G) for all e non-pendant edge of E. The purpose of this paper is to characterize the class of γLt+-ER-critical graphs.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:271018
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1538,
     author = {Mostafa Blidia and Widad Dali},
     title = {A characterization of locating-total domination edge critical graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {31},
     year = {2011},
     pages = {197-202},
     zbl = {1284.05193},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1538}
}
Mostafa Blidia; Widad Dali. A characterization of locating-total domination edge critical graphs. Discussiones Mathematicae Graph Theory, Tome 31 (2011) pp. 197-202. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1538/

[000] [1] M. Blidia and W. Dali, A characterization of a locating-domination edge critical graphs, Australasian J. Combin. 44 (2009) 297-300. | Zbl 1194.05113

[001] [2] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998). | Zbl 0890.05002

[002] [3] D.P. Sumner and P. Blitch, Domination critical graphs, J. Combin. Theory (B) 34 (1983) 65-76, doi: 10.1016/0095-8956(83)90007-2. | Zbl 0512.05055

[003] [4] T.W. Haynes, M.A. Henning and J. Howard, Locating and total dominating sets in trees, Discrete Appl. Math. 154 (2006) 1293-1300, doi: 10.1016/j.dam.2006.01.002. | Zbl 1091.05051