Coloring rectangular blocks in 3-space
Colton Magnant ; Daniel M. Martin
Discussiones Mathematicae Graph Theory, Tome 31 (2011), p. 161-170 / Harvested from The Polish Digital Mathematics Library

If rooms in an office building are allowed to be any rectangular solid, how many colors does it take to paint any configuration of rooms so that no two rooms sharing a wall or ceiling/floor get the same color? In this work, we provide a new construction which shows this number can be arbitrarily large.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:271037
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1535,
     author = {Colton Magnant and Daniel M. Martin},
     title = {Coloring rectangular blocks in 3-space},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {31},
     year = {2011},
     pages = {161-170},
     zbl = {1284.05105},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1535}
}
Colton Magnant; Daniel M. Martin. Coloring rectangular blocks in 3-space. Discussiones Mathematicae Graph Theory, Tome 31 (2011) pp. 161-170. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1535/

[000] [1] J.P. Burling, On coloring problems of families of prototypes, Ph.D. Thesis - University of Colorado, 1, (1965)

[001] [2] T.R. Jensen and B. Toft, Graph coloring problems, Wiley-Interscience Series in Discrete Mathematics and Optimization (John Wiley & Sons Inc., New York, 1995). A Wiley-Interscience Publication.

[002] [3] A.V. Kostochka and J. Nesetril, Properties of Descartes' construction of triangle-free graphs with high chromatic number, Combin. Probab. Comput. 8 (1999) 467-472, doi: 10.1017/S0963548399004022. | Zbl 0951.05036

[003] [4] B. Reed and D. Allwright, Painting the office, MICS Journal 1 (2008) 1-8.