The independent domination number of a random graph
Lane Clark ; Darin Johnson
Discussiones Mathematicae Graph Theory, Tome 31 (2011), p. 129-142 / Harvested from The Polish Digital Mathematics Library

We prove a two-point concentration for the independent domination number of the random graph Gn,p provided p²ln(n) ≥ 64ln((lnn)/p).

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:270956
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1533,
     author = {Lane Clark and Darin Johnson},
     title = {The independent domination number of a random graph},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {31},
     year = {2011},
     pages = {129-142},
     zbl = {1284.05244},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1533}
}
Lane Clark; Darin Johnson. The independent domination number of a random graph. Discussiones Mathematicae Graph Theory, Tome 31 (2011) pp. 129-142. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1533/

[000] [1] N. Alon and J. Spencer, The Probabilistic Method (John Wiley, New York, 1992). | Zbl 0767.05001

[001] [2] B. Bollobás, Random Graphs (Second Edition, Cambridge University Press, New York, 2001).

[002] [3] A. Bonato and C. Wang, A note on domination parameters in random graphs, Discuss. Math. Graph Theory 28 (2008) 307-322, doi: 10.7151/dmgt.1409. | Zbl 1156.05040

[003] [4] A. Godbole and B. Wieland, On the domination number of a Random graph, Electronic J. Combin. 8 (2001) 1-13. | Zbl 0989.05108

[004] [5] T. Haynes, S. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998). | Zbl 0890.05002

[005] [6] T. Haynes, S. Hedetniemi and P. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, Inc., New York, 1998). | Zbl 0883.00011

[006] [7] K. Weber, Domination number for almost every graph, Rostocker Matematisches Kolloquium 16 (1981) 31-43. | Zbl 0476.05067