Weak roman domination in graphs
P. Roushini Leely Pushpam ; T.N.M. Malini Mai
Discussiones Mathematicae Graph Theory, Tome 31 (2011), p. 161-170 / Harvested from The Polish Digital Mathematics Library

Let G = (V,E) be a graph and f be a function f:V → 0,1,2. A vertex u with f(u) = 0 is said to be undefended with respect to f, if it is not adjacent to a vertex with positive weight. The function f is a weak Roman dominating function (WRDF) if each vertex u with f(u) = 0 is adjacent to a vertex v with f(v) > 0 such that the function f’: V → 0,1,2 defined by f’(u) = 1, f’(v) = f(v)-1 and f’(w) = f(w) if w ∈ V-u,v, has no undefended vertex. The weight of f is w(f)=vVf(v). The weak Roman domination number, denoted by γr(G), is the minimum weight of a WRDF in G. In this paper, we characterize the class of trees and split graphs for which γr(G)=γ(G) and find γr-value for a caterpillar, a 2×n grid graph and a complete binary tree.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:270829
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1532,
     author = {P. Roushini Leely Pushpam and T.N.M. Malini Mai},
     title = {Weak roman domination in graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {31},
     year = {2011},
     pages = {161-170},
     zbl = {1284.05201},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1532}
}
P. Roushini Leely Pushpam; T.N.M. Malini Mai. Weak roman domination in graphs. Discussiones Mathematicae Graph Theory, Tome 31 (2011) pp. 161-170. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1532/

[000] [1] E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 78 (2004) 11-22, doi: 10.1016/j.disc.2003.06.004. | Zbl 1036.05034

[001] [2] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, (Eds), Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998). | Zbl 0890.05002

[002] [3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, (Eds), Domination in Graphs; Advanced Topics (Marcel Dekker, Inc. New York, 1998). | Zbl 0883.00011

[003] [4] S.T. Hedetniemi and M.A. Henning, Defending the Roman Empire - A new strategy, Discrete Math. 266 (2003) 239-251, doi: 10.1016/S0012-365X(02)00811-7. | Zbl 1024.05068

[004] [5] M.A. Henning, A characterization of Roman trees, Discuss. Math. Graph Theory 22 (2002) 325-334, doi: 10.7151/dmgt.1178. | Zbl 1030.05093

[005] [6] M.A. Henning, Defending the Roman Empire from multiple attacks, Discrete Math. 271 (2003) 101-115, doi: 10.1016/S0012-365X(03)00040-2. | Zbl 1022.05055

[006] [7] C.S. ReVelle, Can you protect the Roman Empire?, John Hopkins Magazine (2) (1997) 70.

[007] [8] C.S. ReVelle and K.E. Rosing, Defendens Romanum: Imperium problem in military strategy, American Mathematical Monthly 107 (2000) 585-594, doi: 10.2307/2589113. | Zbl 1039.90038

[008] [9] R.R. Rubalcaba and P.J. Slater, Roman Dominating Influence Parameters, Discrete Math. 307 (2007) 3194-3200, doi: 10.1016/j.disc.2007.03.020. | Zbl 1127.05075

[009] [10] P. Roushini Leely Pushpam and T.N.M. Malini Mai, On Efficient Roman dominatable graphs, J. Combin Math. Combin. Comput. 67 (2008) 49-58. | Zbl 1189.05138

[010] [11] P. Roushini Leely Pushpam and T.N.M. Malini Mai, Edge Roman domination in graphs, J. Combin Math. Combin. Comput. 69 (2009) 175-182. | Zbl 1195.05056

[011] [12] I. Stewart, Defend the Roman Empire, Scientific American 281 (1999) 136-139.