In this paper, a complete characterization of the (super) edge-magic linear forests with two components is provided. In the process of establishing this characterization, the super edge-magic, harmonious, sequential and felicitous properties of certain 2-regular graphs are investigated, and several results on super edge-magic and felicitous labelings of unions of cycles and paths are presented. These labelings resolve one conjecture on harmonious graphs as a corollary, and make headway towards the resolution of others. They also provide the basis for some new conjectures (and a weaker form of an old one) on labelings of 2-regular graphs.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1531, author = {Ramon M. Figueroa-Centeno and Rikio Ichishima and Francesc A. Muntaner-Batle and Akito Oshima}, title = {A magical approach to some labeling conjectures}, journal = {Discussiones Mathematicae Graph Theory}, volume = {31}, year = {2011}, pages = {79-113}, zbl = {1238.05228}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1531} }
Ramon M. Figueroa-Centeno; Rikio Ichishima; Francesc A. Muntaner-Batle; Akito Oshima. A magical approach to some labeling conjectures. Discussiones Mathematicae Graph Theory, Tome 31 (2011) pp. 79-113. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1531/
[000] [1] J. Abrham and A. Kotzig, Graceful valuations of 2-regular graphs with two components, Discrete Math. 150 (1996) 3-15, doi: 10.1016/0012-365X(95)00171-R. | Zbl 0856.05086
[001] [2] G. Chartrand and L. Lesniak, Graphs and Digraphs (Wadsworth & Brook/Cole Advanced Books and Software, Monterey, Calif. 1986). | Zbl 0666.05001
[002] [3] H. Enomoto, A. Lladó, T. Nakamigawa and G. Ringel, Super edge-magic graphs, SUT J. Math. 34 (1998) 105-109. | Zbl 0918.05090
[003] [4] R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, The place of super edge-magic labelings among other classes of labelings, Discrete Math. 231 (2001) 153-168, doi: 10.1016/S0012-365X(00)00314-9. | Zbl 0977.05120
[004] [5] R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, On super edge-magic graphs, Ars Combin. 64 (2002) 81-96. | Zbl 1071.05568
[005] [6] R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, Labeling the vertex amalgamation of graphs, Discuss. Math. Graph Theory 23 (2003) 129-139, doi: 10.7151/dmgt.1190. | Zbl 1054.05087
[006] [7] R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, On edge-magic labelings of certain disjoint unions of graphs, Austral. J. Combin. 32 (2005) 225-242. | Zbl 1070.05075
[007] [8] R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, On the super edge-magic deficiency of graphs, Ars Combin. 78 (2006) 33-45. | Zbl 1164.05445
[008] [9] R.M. Figueroa-Centeno, R. Ichishima, F.A. Muntaner-Batle and M. Rius-Font, Labeling generating matrices, J. Combin. Math. Combin. Comput. 67 (2008) 189-216.
[009] [10] R. Frucht and L.C. Salinas, Graceful numbering of snakes with constraints on the first label, Ars Combin. (B) 20 (1985) 143-157. | Zbl 0594.05057
[010] [11] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 5 (2009) #DS6. | Zbl 0953.05067
[011] [12] S.W. Golomb, How to number a graph, in: Graph Theory and Computing, R.C. Read, ed. (Academic Press, New York, 1972) 23-37. | Zbl 0293.05150
[012] [13] T. Grace, On sequential labelings of graphs, J. Graph Theory 7 (1983) 195-201, doi: 10.1002/jgt.3190070208. | Zbl 0522.05063
[013] [14] R.L. Graham and N.J. Sloane, On additive bases and harmonious graphs, SIAM J. Alg. Discrete Meth. 1 (1980) 382-404, doi: 10.1137/0601045. | Zbl 0499.05049
[014] [15] I. Gray and J.A. MacDougall, Vertex-magic labelings of regular graphs II, Discrete Math. 309 (2009) 5986-5999, doi: 10.1016/j.disc.2009.04.031. | Zbl 1226.05214
[015] [16] J. Holden, D. McQuillan and J.M. McQuillan, A conjecture on strong magic labelings of 2-regular graphs, Discrete Math. 309 (2009) 4130-4136, doi: 10.1016/j.disc.2008.12.020. | Zbl 1228.05314
[016] [17] A. Kotzig, β-valuations of quadratic graphs with isomorphic components, Utilitas Math. 7 (1975) 263-279.
[017] [18] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970) 451-461, doi: 10.4153/CMB-1970-084-1. | Zbl 0213.26203
[018] [19] S.M. Lee, E. Schmeichel and S.C. Shee, On felicitous graphs, Discrete Math. 93 (1991) 201-209, doi: 10.1016/0012-365X(91)90256-2. | Zbl 0741.05059
[019] [20] M. Seoud, A.E.I. Abdel Maqsoud and J. Sheehan, Harmonious graphs, Utilitas Math. 47 (1995) 225-233. | Zbl 0830.05055
[020] [21] S.C. Shee, On harmonious and related graphs, Ars Combin. 23 (1987) 237-247. | Zbl 0616.05055
[021] [22] S.C. Shee and S.M. Lee, On harmonious and felicitous labelings of graphs, Congress Numer. 68 (1989) 155-170. | Zbl 0689.05045
[022] [23] G. Ringel and A. Lladó, Another tree conjecture, Bull. Inst. Combin. Appl. 18 (1996) 83-85.
[023] [24] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Internat. Symposium, Rome, July 1966), Gordon and Breach, N.Y and Dunod Paris (1967) 349-355.
[024] [25] W.D. Wallis, Magic Graphs (Birkhäuser, Boston, 2001), doi: 10.1007/978-1-4612-0123-6. | Zbl 0979.05001