A radio labeling is an assignment c:V(G) → N such that every distinct pair of vertices u,v satisfies the inequality d(u,v) + |c(u)-c(v)| ≥ diam(G) + 1. The span of a radio labeling is the maximum value. The radio number of G, rn(G), is the minimum span over all radio labelings of G. Generalized prism graphs, denoted , s ≥ 1, n ≥ s, have vertex set (i,j) | i = 1,2 and j = 1,...,n and edge set ((i,j),(i,j ±1)) ∪ ((1,i),(2,i+σ)) | σ = -⌊(s-1)/2⌋...,0,...,⌊s/2⌋. In this paper we determine the radio number of for s = 1,2 and 3. In the process we develop techniques that are likely to be of use in determining radio numbers of other families of graphs.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1529, author = {Paul Martinez and Juan Ortiz and Maggy Tomova and Cindy Wyels}, title = {Radio numbers for generalized prism graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {31}, year = {2011}, pages = {45-62}, zbl = {1284.05240}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1529} }
Paul Martinez; Juan Ortiz; Maggy Tomova; Cindy Wyels. Radio numbers for generalized prism graphs. Discussiones Mathematicae Graph Theory, Tome 31 (2011) pp. 45-62. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1529/
[000] [1] G. Chang and D. Kuo, The L(2,1)-labeling problem on graphs, SIAM J. Discrete Math. 9 (1996) 309-316, doi: 10.1137/S0895480193245339. | Zbl 0860.05064
[001] [2] G. Chartrand, D. Erwin, P. Zhang and F. Harary, Radio labelings of graphs, Bull. Inst. Combin. Appl. 33 (2001) 77-85. | Zbl 0989.05102
[002] [3] G. Chartrand and P. Zhang, Radio colorings of graphs-a survey, Int. J. Comput. Appl. Math. 2 (2007) 237-252.
[003] [4] W.K. Hale, Frequency assignment: theory and application, Proc. IEEE 68 (1980) 1497-1514, doi: 10.1109/PROC.1980.11899.
[004] [5] R. Khennoufa and O. Togni, The Radio Antipodal and Radio Numbers of the Hypercube, Ars Combin., in press. | Zbl 1265.05536
[005] [6] X. Li, V. Mak and S. Zhou, Optimal radio labellings of complete m-ary trees, Discrete Appl. Math. 158 (2010) 507-515, doi: 10.1016/j.dam.2009.11.014. | Zbl 1216.05134
[006] [7] D.D.-F. Liu, Radio number for trees, Discrete Math. 308 (2008) 1153-1164, doi: 10.1016/j.disc.2007.03.066. | Zbl 1133.05090
[007] [8] D.D.-F. Liu and M. Xie, Radio numbers of squares of cycles, Congr. Numer. 169 (2004) 101-125. | Zbl 1064.05089
[008] [9] D.D.-F. Liu and M. Xie, Radio number for square paths, Ars Combin. 90 (2009) 307-319. | Zbl 1224.05451
[009] [10] D.D.-F. Liu and X. Zhu, Multilevel distance labelings for paths and cycles, SIAM J. Discrete Math. 19 (2009) 610-621 (electronic), doi: 10.1137/S0895480102417768. | Zbl 1095.05033
[010] [11] P. Zhang, Radio labelings of cycles, Ars Combin. 65 (2002) 21-32. | Zbl 1071.05573