Decomposition tree and indecomposable coverings
Andrew Breiner ; Jitender Deogun ; Pierre Ille
Discussiones Mathematicae Graph Theory, Tome 31 (2011), p. 37-44 / Harvested from The Polish Digital Mathematics Library

Let G = (V,A) be a directed graph. With any subset X of V is associated the directed subgraph G[X] = (X,A ∩ (X×X)) of G induced by X. A subset X of V is an interval of G provided that for a,b ∈ X and x ∈ V∖X, (a,x) ∈ A if and only if (b,x) ∈ A, and similarly for (x,a) and (x,b). For example ∅, V, and {x}, where x ∈ V, are intervals of G which are the trivial intervals. A directed graph is indecomposable if all its intervals are trivial. Given an integer k > 0, a directed graph G = (V,A) is called an indecomposable k-covering provided that for every subset X of V with |X| ≤ k, there exists a subset Y of V such that X ⊆ Y, G[Y] is indecomposable with |Y| ≥ 3. In this paper, the indecomposable k-covering directed graphs are characterized for any k > 0.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:270976
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1528,
     author = {Andrew Breiner and Jitender Deogun and Pierre Ille},
     title = {Decomposition tree and indecomposable coverings},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {31},
     year = {2011},
     pages = {37-44},
     zbl = {1284.05112},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1528}
}
Andrew Breiner; Jitender Deogun; Pierre Ille. Decomposition tree and indecomposable coverings. Discussiones Mathematicae Graph Theory, Tome 31 (2011) pp. 37-44. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1528/

[000] [1] R. McConnell and F. de Montgolfier, Linear-time modular decomposition of directed graphs, Discrete Appl. Math. 145 (2005) 198-209, doi: 10.1016/j.dam.2004.02.017. | Zbl 1055.05123

[001] [2] A. Cournier and M. Habib, An efficient algorithm to recognize prime undirected graphs, in: Graph-theoretic Concepts in Computer Science, Lecture Notes in Computer Science 657, E.W. Mayr, (Editor), (Springer, Berlin, 1993) 212-224. | Zbl 0925.05051

[002] [3] A. Ehrenfeucht and G. Rozenberg, Theory of 2-structures. I. Clans, basic subclasses, and morphisms, Theoret. Comput. Sci. 70 (1990) 277-303, doi: 10.1016/0304-3975(90)90129-6. | Zbl 0701.05051

[003] [4] T. Gallai, Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hungar. 18 (1967) 25-66, doi: 10.1007/BF02020961.

[004] [5] M. Habib, Substitution des structures combinatoires, théorie et algorithmes, Ph.D. Thesis, Université Pierre et Marie Curie, Paris VI, 1981.

[005] [6] P. Ille, Indecomposable graphs, Discrete Math. 173 (1997) 71-78, doi: 10.1016/S0012-365X(96)00097-0. | Zbl 0882.05108

[006] [7] D. Kelly, Comparability graphs, in: Graphs and Orders, I. Rival, (Editor), Reidel (Drodrecht, 1985) 3-40.

[007] [8] F. Maffray and M. Preissmann, A translation of Tibor Gallai's paper: transitiv orientierbare Graphen, in: Perfect Graphs, J.J. Ramirez-Alfonsin and B.A. Reed, (Editors) (Wiley, New York, 2001) 25-66. | Zbl 0989.05050

[008] [9] J. Schmerl and W. Trotter, Critically indecomposable partially ordered sets, graphs, tournaments and other binary relational structures, Discrete Math. 113 (1993) 191-205, doi: 10.1016/0012-365X(93)90516-V. | Zbl 0776.06002

[009] [10] J. Spinrad, P₄-trees and substitution decomposition, Discrete Appl. Math. 39 (1992) 263-291, doi: 10.1016/0166-218X(92)90180-I. | Zbl 0758.68036