Notes on the independence number in the Cartesian product of graphs
G. Abay-Asmerom ; R. Hammack ; C.E. Larson ; D.T. Taylor
Discussiones Mathematicae Graph Theory, Tome 31 (2011), p. 25-35 / Harvested from The Polish Digital Mathematics Library

Every connected graph G with radius r(G) and independence number α(G) obeys α(G) ≥ r(G). Recently the graphs for which equality holds have been classified. Here we investigate the members of this class that are Cartesian products. We show that for non-trivial graphs G and H, α(G ☐ H) = r(G ☐ H) if and only if one factor is a complete graph on two vertices, and the other is a nontrivial complete graph. We also prove a new (polynomial computable) lower bound α(G ☐ H) ≥ 2r(G)r(H) for the independence number and we classify graphs for which equality holds. The second part of the paper concerns independence irreducibility. It is known that every graph G decomposes into a König-Egervary subgraph (where the independence number and the matching number sum to the number of vertices) and an independence irreducible subgraph (where every non-empty independent set I has more than |I| neighbors). We examine how this decomposition relates to the Cartesian product. In particular, we show that if one of G or H is independence irreducible, then G ☐ H is independence irreducible.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:270895
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1527,
     author = {G. Abay-Asmerom and R. Hammack and C.E. Larson and D.T. Taylor},
     title = {Notes on the independence number in the Cartesian product of graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {31},
     year = {2011},
     pages = {25-35},
     zbl = {1284.05190},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1527}
}
G. Abay-Asmerom; R. Hammack; C.E. Larson; D.T. Taylor. Notes on the independence number in the Cartesian product of graphs. Discussiones Mathematicae Graph Theory, Tome 31 (2011) pp. 25-35. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1527/

[000] [1] B. Bresar and B. Zmazek, On the Independence Graph of a Graph, Discrete Math. 272 (2003) 263-268, doi: 10.1016/S0012-365X(03)00194-8. | Zbl 1028.05073

[001] [2] S. Butenko and S. Trukhanov, Using Critical Sets to Solve the Maximum Independent Set Problem, Operations Research Letters 35 (2007) 519-524. | Zbl 1149.90375

[002] [3] E. DeLaVina, C.E. Larson, R. Pepper and B. Waller, A Characterization of Graphs Where the Independence Number Equals the Radius, submitted, 2009. | Zbl 1256.05164

[003] [4] P. Erdös, M. Saks and V. Sós, Maximum Induced Trees in Graphs, J. Combin. Theory (B) 41 (1986) 61-69, doi: 10.1016/0095-8956(86)90028-6.

[004] [5] S. Fajtlowicz, A Characterization of Radius-Critical Graphs, J. Graph Theory 12 (1988) 529-532, doi: 10.1002/jgt.3190120409. | Zbl 0713.05037

[005] [6] S. Fajtlowicz, Written on the Wall: Conjectures of Graffiti, available on the WWW at: http://www.math.uh.edu/clarson/graffiti.html.

[006] [7] M. Garey and D. Johnson, Computers and Intractability (W.H. Freeman and Company, New York, 1979).

[007] [8] J. Hagauer and S. Klavžar, On Independence Numbers of the Cartesian Product of Graphs, Ars. Combin. 43 (1996) 149-157. | Zbl 0881.05061

[008] [9] P. Hell, X. Yu and H. Zhou, Independence Ratios of Graph Powers, Discrete Math. 127 (1994) 213-220, doi: 10.1016/0012-365X(92)00480-F. | Zbl 0795.05054

[009] [10] W. Imrich and S. Klavžar, Product Graphs (Wiley-Interscience, New York, 2000).

[010] [11] W. Imrich, S. Klavžar and D. Rall, Topics in Graph Theory: Graphs and their Cartesian Product, A K Peters (Wellesley, MA, 2008). | Zbl 1156.05001

[011] [12] P.K. Jha and G. Slutzki, Independence Numbers of Product Graphs, Appl. Math. Lett. 7 (1994) 91-94, doi: 10.1016/0893-9659(94)90018-3. | Zbl 0811.05033

[012] [13] S. Klavžar, Some New Bounds and Exact Results on the Independence Number of Cartesian Product Graphs, Ars Combin. 74 (2005) 173-186. | Zbl 1076.05059

[013] [14] C.E. Larson, A Note on Critical Independent Sets, Bulletin of the Institute of Combinatorics and its Applications 51 (2007) 34-46. | Zbl 1135.05051

[014] [15] C.E. Larson, Graph Theoretic Independence and Critical Independent Sets, Ph.D. Dissertation (University of Houston, 2008).

[015] [16] C.E. Larson, The Critical Independence Number and an Independence Decomposition, submitted, 2009 (available at www.arxiv.org: arXiv:0912.2260v1). | Zbl 1230.05226

[016] [17] L. Lovász and M.D. Plummer, Matching Theory (North Holland, Amsterdam, 1986).

[017] [18] M.P. Scott, J.S. Powell and D.F. Rall, On the Independence Number of the Cartesian Product of Caterpillars, Ars Combin. 60 (2001) 73-84. | Zbl 1071.05554

[018] [19] C.-Q. Zhang, Finding Critical Independent Sets and Critical Vertex Subsets are Polynomial Problems, SIAM J. Discrete Math. 3 (1990) 431-438, doi: 10.1137/0403037. | Zbl 0756.05095