The geodetic number of strong product graphs
A.P. Santhakumaran ; S.V. Ullas Chandran
Discussiones Mathematicae Graph Theory, Tome 30 (2010), p. 687-700 / Harvested from The Polish Digital Mathematics Library

For two vertices u and v of a connected graph G, the set IG[u,v] consists of all those vertices lying on u-v geodesics in G. Given a set S of vertices of G, the union of all sets IG[u,v] for u,v ∈ S is denoted by IG[S]. A set S ⊆ V(G) is a geodetic set if IG[S]=V(G) and the minimum cardinality of a geodetic set is its geodetic number g(G) of G. Bounds for the geodetic number of strong product graphs are obtainted and for several classes improved bounds and exact values are obtained.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:270905
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1523,
     author = {A.P. Santhakumaran and S.V. Ullas Chandran},
     title = {The geodetic number of strong product graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {30},
     year = {2010},
     pages = {687-700},
     zbl = {1217.05085},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1523}
}
A.P. Santhakumaran; S.V. Ullas Chandran. The geodetic number of strong product graphs. Discussiones Mathematicae Graph Theory, Tome 30 (2010) pp. 687-700. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1523/

[000] [1] B. Bresar, S. Klavžar and A.T. Horvat, On the geodetic number and related metric sets in Cartesian product graphs, Discrete Math. 308 (2008) 5555-5561, doi: 10.1016/j.disc.2007.10.007. | Zbl 1200.05060

[001] [2] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley, Redwood City, CA, 1990). | Zbl 0688.05017

[002] [3] G. Chartrand, F. Harary and P. Zhang, On the Geodetic Number of a Graph, Networks 39 (2002) 1-6, doi: 10.1002/net.10007. | Zbl 0987.05047

[003] [4] G. Chartrand, F. Harary, H.C. Swart and P. Zhang, Geodomination in Graphs, Bulletin of the ICA 31 (2001) 51-59. | Zbl 0969.05048

[004] [5] G. Chartrand and P. Zhang, Introduction to Graph Theory (Tata McGraw-Hill Edition, New Delhi, 2006).

[005] [6] F. Harary, E. Loukakis and C. Tsouros, The geodetic number of a graph, Mathl. Comput. Modeling 17 (1993) 89-95, doi: 10.1016/0895-7177(93)90259-2. | Zbl 0825.68490

[006] [7] F. Harary and T.W. Haynes, Double domination in graphs, Ars Combin. 55 (2000) 201-213. | Zbl 0993.05104

[007] [8] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (Wiley-Interscience, New York, 2000).

[008] [9] A.P. Santhakumaran and S.V. Ullas Chandran, The hull number of strong product of graphs, (communicated). | Zbl 1229.05240