n-ary transit functions are introduced as a generalization of binary (2-ary) transit functions. We show that they can be associated with convexities in natural way and discuss the Steiner convexity as a natural n-ary generalization of geodesicaly convexity. Furthermore, we generalize the betweenness axioms to n-ary transit functions and discuss the connectivity conditions for underlying hypergraph. Also n-ary all paths transit function is considered.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1522, author = {Manoj Changat and Joseph Mathews and Iztok Peterin and Prasanth G. Narasimha-Shenoi}, title = {n-ary transit functions in graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {30}, year = {2010}, pages = {671-685}, zbl = {1217.05081}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1522} }
Manoj Changat; Joseph Mathews; Iztok Peterin; Prasanth G. Narasimha-Shenoi. n-ary transit functions in graphs. Discussiones Mathematicae Graph Theory, Tome 30 (2010) pp. 671-685. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1522/
[000] [1] B. Bresar, M. Changat, J. Mathews, I. Peterin, P.G. Narasimha-Shenoi and A. Tepeh Horvat, Steiner intervals, geodesic intervals, and betweenness, Discrete Math. 309 (2009) 6114-6125, doi: 10.1016/j.disc.2009.05.022. | Zbl 1188.05058
[001] [2] M. Changat, S. Klavžar and H.M. Mulder, The All-Paths Transit Function of a Graph, Czechoslovak Math. J. 51 (126) (2001) 439-448. | Zbl 0977.05135
[002] [3] M. Changat and J. Mathew, Induced path transit function, monotone and Peano axioms, Discrete Math. 286 (2004) 185-194, doi: 10.1016/j.disc.2004.02.017. | Zbl 1056.05044
[003] [4] M. Changat and J. Mathew, Characterizations of J-monotone graphs, in: Convexity in Discrete Structures (M. Changat, S. Klavžar, H.M. Mulder, A. Vijayakumar, eds.), Lecture Notes Ser. 5, Ramanujan Math. Soc. (2008) 47-55. | Zbl 1166.05017
[004] [5] M. Changat, J. Mathew and H.M. Mulder, Induced path function, betweenness and monotonicity, Discrete Appl. Math. 158 (2010) 426-433, doi: 10.1016/j.dam.2009.10.004. | Zbl 1225.05146
[005] [6] M. Changat, J. Mathew and H.M. Mulder, Induced path transit function, betweenness and monotonicity, Elect. Notes Discrete Math. 15 (2003). | Zbl 1259.05052
[006] [7] M. Changat, H.M. Mulder and G. Sierksma, Convexities Related to Path Properties on Graphs, Discrete Math. 290 (2005) 117-131, doi: 10.1016/j.disc.2003.07.014. | Zbl 1058.05043
[007] [8] M. Changat, P.G. Narasimha-Shenoi and I.M. Pelayo, The longest path transit function and its betweenness, to appear in Util. Math. | Zbl 1232.05107
[008] [9] P. Duchet, Convexity in combinatorial structures, Rend. Circ. Mat. Palermo (2) Suppl. 14 (1987) 261-293. | Zbl 0644.52001
[009] [10] P. Duchet, Convex sets in graphs II. Minimal path convexity, J. Combin. Theory (B) 44 (1988) 307-316, doi: 10.1016/0095-8956(88)90039-1. | Zbl 0672.52001
[010] [11] P. Duchet, Discrete convexity: retractions, morphisms and partition problem, in: Proceedings of the conference on graph connections, India, (1998), Allied Publishers, New Delhi, 10-18. | Zbl 0957.05030
[011] [12] P. Hall, On representation of subsets, J. Lon. Mat. Sc. 10 (1935) 26-30, doi: 10.1112/jlms/s1-10.37.26. | Zbl 0010.34503
[012] [13] M.A. Morgana and H.M. Mulder, The induced path convexity, betweenness and svelte graphs, Discrete Math. 254 (2002) 349-370, doi: 10.1016/S0012-365X(01)00296-5. | Zbl 1003.05090
[013] [14] H.M. Mulder, The Interval Function of a Graph. Mathematical Centre Tracts 132, Mathematisch Centrum (Amsterdam, 1980). | Zbl 0446.05039
[014] [15] H.M. Mulder, Transit functions on graphs (and posets), in: Convexity in Discrete Structures (M. Changat, S. Klavžar, H.M. Mulder, A. Vijayakumar, eds.), Lecture Notes Ser. 5, Ramanujan Math. Soc. (2008) 117-130. | Zbl 1166.05019
[015] [16] L. Nebeský, A characterization of the interval function of a connected graph, Czechoslovak Math. J. 44(119) (1994) 173-178. | Zbl 0808.05046
[016] [17] L. Nebeský, A Characterization of the interval function of a (finite or infinite) connected graph, Czechoslovak Math. J. 51(126) (2001) 635-642. | Zbl 1079.05505
[017] [18] E. Sampathkumar, Convex sets in graphs, Indian J. Pure Appl. Math. 15 (1984) 1065-1071. | Zbl 0563.52001
[018] [19] M.L.J. van de Vel, Theory of Convex Structures (North Holland, Amsterdam, 1993). | Zbl 0785.52001