A graph G is called (H;k)-vertex stable if G contains a subgraph isomorphic to H ever after removing any of its k vertices. Q(H;k) denotes the minimum size among the sizes of all (H;k)-vertex stable graphs. In this paper we complete the characterization of -vertex stable graphs with minimum size. Namely, we prove that for m ≥ 2 and n ≥ m+2, and as well as are the only -vertex stable graphs with minimum size, confirming the conjecture of Dudek and Zwonek.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1521, author = {Aneta Dudek and Andrzej \.Zak}, title = {On vertex stability with regard to complete bipartite subgraphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {30}, year = {2010}, pages = {663-669}, zbl = {1217.05112}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1521} }
Aneta Dudek; Andrzej Żak. On vertex stability with regard to complete bipartite subgraphs. Discussiones Mathematicae Graph Theory, Tome 30 (2010) pp. 663-669. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1521/
[000] [1] R. Diestel, Graph Theory, second ed. (Springer-Verlag, 2000).
[001] [2] A. Dudek, A. Szymaski and M. Zwonek, (H,k) stable graphs with minimum size, Discuss. Math. Graph Theory 28 (2008) 137-149, doi: 10.7151/dmgt.1397. | Zbl 1152.05035
[002] [3] A. Dudek and M. Zwonek, (H,k) stable bipartite graphs with minimum size, Discuss. Math. Graph Theory 29 (2009) 573-581, doi: 10.7151/dmgt.1465. | Zbl 1193.05095