A recent result of Henning and Southey (A note on graphs with disjoint dominating and total dominating set, Ars Comb. 89 (2008), 159-162) implies that every connected graph of minimum degree at least three has a dominating set D and a total dominating set T which are disjoint. We show that the Petersen graph is the only such graph for which D∪T necessarily contains all vertices of the graph.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1514, author = {Michael A. Henning and Christian L\"owenstein and Dieter Rautenbach}, title = {Partitioning a graph into a dominating set, a total dominating set, and something else}, journal = {Discussiones Mathematicae Graph Theory}, volume = {30}, year = {2010}, pages = {563-574}, zbl = {1217.05179}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1514} }
Michael A. Henning; Christian Löwenstein; Dieter Rautenbach. Partitioning a graph into a dominating set, a total dominating set, and something else. Discussiones Mathematicae Graph Theory, Tome 30 (2010) pp. 563-574. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1514/
[000] [1] N.J. Calkin and P. Dankelmann, The domatic number of regular graphs, Ars Combin. 73 (2004) 247-255. | Zbl 1073.05046
[001] [2] G.S. Domke, J.E. Dunbar and L.R. Markus, The inverse domination number of a graph, Ars Combin. 72 (2004) 149-160. | Zbl 1077.05072
[002] [3] U. Feige, M.M. Halldórsson, G. Kortsarz and A. Srinivasan, Approximating the domatic number, SIAM J. Comput. 32 (2002) 172-195, doi: 10.1137/S0097539700380754. | Zbl 1021.05072
[003] [4] C. Godsil and G. Royle, Algebraic Graph Theory (Springer, 2001).
[004] [5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998). | Zbl 0890.05002
[005] [6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds), Domination in graphs: Advanced topics (Marcel Dekker, New York, 1998). | Zbl 0883.00011
[006] [7] S.M. Hedetniemi, S.T. Hedetniemi, R.C. Laskar, L. Markus and P.J. Slater, Disjoint dominating sets in graphs, in: Proc. Internat. Conf. Discrete Math., ICDM 2006, 87-100, Ramanujan Math. Soc., Lecture Notes Series in Mathematics, 2008. | Zbl 1171.05038
[007] [8] M.A. Henning, C. Löwenstein and D. Rautenbach, Remarks about disjoint dominating sets, Discrete Math. 309 (2009) 6451-6458, doi: 10.1016/j.disc.2009.06.017. | Zbl 1189.05130
[008] [9] M.A. Henning and J. Southey, A note on graphs with disjoint dominating and total dominating sets, Ars Combin. 89 (2008) 159-162. | Zbl 1224.05370
[009] [10] M.A. Henning and J. Southey, A characterization of graphs with disjoint dominating and total dominating sets, Quaestiones Mathematicae 32 (2009) 119-129, doi: 10.2989/QM.2009.32.1.10.712. | Zbl 1168.05348
[010] [11] V.R. Kulli and S.C. Sigarkanti, Inverse domination in graphs, Nat. Acad. Sci. Lett. 14 (1991) 473-475. | Zbl 0906.05038
[011] [12] C. Löwenstein and D. Rautenbach, Pairs of disjoint dominating sets and the minimum degree of graphs, Graphs Combin. 26 (2010) 407-424, doi: 10.1007/s00373-010-0918-9. | Zbl 1219.05125
[012] [13] O. Ore, Theory of Graphs, Amer. Math. Soc. Transl. 38 (Amer. Math. Soc., Providence, RI, 1962) 206-212.
[013] [14] B. Zelinka, Total domatic number and degrees of vertices of a graph, Math. Slovaca 39 (1989) 7-11. | Zbl 0688.05066
[014] [15] B. Zelinka, Domatic numbers of graphs and their variants: A survey, in: Domination in graphs: Advanced topics, T.W. Haynes et al. eds (Marcel Dekker, New York, 1998), 351-377. | Zbl 0894.05026