A subgraph of an edge-colored graph is rainbow if all of its edges have different colors. For a graph H and a positive integer n, the anti-Ramsey number f(n,H) is the maximum number of colors in an edge-coloring of Kₙ with no rainbow copy of H. The rainbow number rb(n,H) is the minimum number of colors such that any edge-coloring of Kₙ with rb(n,H) number of colors contains a rainbow copy of H. Certainly rb(n,H) = f(n,H) + 1. Anti-Ramsey numbers were introduced by Erdös et al. [5] and studied in numerous papers. We show that in all nontrivial cases.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1513, author = {Izolda Gorgol and Ewa \L azuka}, title = {Rainbow numbers for small stars with one edge added}, journal = {Discussiones Mathematicae Graph Theory}, volume = {30}, year = {2010}, pages = {555-562}, zbl = {1217.05161}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1513} }
Izolda Gorgol; Ewa Łazuka. Rainbow numbers for small stars with one edge added. Discussiones Mathematicae Graph Theory, Tome 30 (2010) pp. 555-562. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1513/
[000] [1] N. Alon, On the conjecture of Erdös, Simonovits and Sós concerning anti-Ramsey theorems, J. Graph Theory 7 (1983) 91-94, doi: 10.1002/jgt.3190070112. | Zbl 0456.05038
[001] [2] M. Axenovich and T. Jiang, Anti-Ramsey numbers for small complete bipartite graphs, Ars Combinatoria 73 (2004) 311-318. | Zbl 1072.05041
[002] [3] R. Diestel, Graph theory (Springer-Verlag, New York, 1997).
[003] [4] P. Erdös and M. Simonovits, A limit theorem in graph theory, Studia Sci. Math. Hungar. 1 (1966) 51-57.
[004] [5] P. Erdös, A. Simonovits and V. Sós, Anti-Ramsey theorems, in: Infinite and Finite Sets (A. Hajnal, R. Rado, and V. Sós, eds.), Colloq. Math. Soc. J. Bolyai (North-Holland, 1975) 633-643.
[005] [6] I. Gorgol, On rainbow numbers for cycles with pendant edges, Graphs and Combinatorics 24 (2008) 327-331, doi: 10.1007/s00373-008-0786-8. | Zbl 1180.05070
[006] [7] T. Jiang, Anti-Ramsey numbers for subdivided graphs, J. Combin. Theory (B) 85 (2002) 361-366, doi: 10.1006/jctb.2001.2105. | Zbl 1019.05047
[007] [8] T. Jiang, Edge-colorings with no large polychromatic stars, Graphs and Combinatorics 18 (2002) 303-308, doi: 10.1007/s003730200022. | Zbl 0991.05044
[008] [9] T. Jiang and D.B. West, On the Erdös-Simonovits-Sós conjecture about the anti-Ramsey number of a cycle, Combin. Probab. Comput. 12 (2003) 585-598, doi: 10.1017/S096354830300590X. | Zbl 1063.05100
[009] [10] T. Jiang and D.B. West, Edge-colorings of complete graphs that avoid polychromatic trees, Discrete Math. 274 (2004) 137-145, doi: 10.1016/j.disc.2003.09.002. | Zbl 1032.05089
[010] [11] J.J. Montellano-Ballesteros, Totally multicolored diamonds, Electronic Notes in Discrete Math. 30 (2008) 231-236, doi: 10.1016/j.endm.2008.01.040. | Zbl 05285004
[011] [12] J.J. Montellano-Ballesteros and V. Neuman-Lara, An anti-Ramsey theorem on cycles, Graphs and Combinatorics 21 (2005) 343-354, doi: 10.1007/s00373-005-0619-y. | Zbl 1075.05058
[012] [13] I. Schiermeyer, Rainbow 5- and 6-cycles: a proof of the conjecture of Erdös, Simonovits and Sós, preprint (TU Bergakademie Freiberg, 2001).
[013] [14] I. Schiermeyer, Rainbow numbers for matchings and complete graphs, Discrete Math. 286 (2004) 157-162, doi: 10.1016/j.disc.2003.11.057. | Zbl 1053.05053
[014] [15] M. Simonovits and V. Sós, On restricted colorings of Kₙ, Combinatorica 4 (1984) 101-110, doi: 10.1007/BF02579162.