Lower bounds for the domination number
Ermelinda Delaviña ; Ryan Pepper ; Bill Waller
Discussiones Mathematicae Graph Theory, Tome 30 (2010), p. 475-487 / Harvested from The Polish Digital Mathematics Library

In this note, we prove several lower bounds on the domination number of simple connected graphs. Among these are the following: the domination number is at least two-thirds of the radius of the graph, three times the domination number is at least two more than the number of cut-vertices in the graph, and the domination number of a tree is at least as large as the minimum order of a maximal matching.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:270791
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1508,
     author = {Ermelinda Delavi\~na and Ryan Pepper and Bill Waller},
     title = {Lower bounds for the domination number},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {30},
     year = {2010},
     pages = {475-487},
     zbl = {1217.05177},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1508}
}
Ermelinda Delaviña; Ryan Pepper; Bill Waller. Lower bounds for the domination number. Discussiones Mathematicae Graph Theory, Tome 30 (2010) pp. 475-487. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1508/

[000] [1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (American Elsevier Publishing, 1976). | Zbl 1226.05083

[001] [2] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley, 1990). | Zbl 0688.05017

[002] [3] M. Chellali and T. Haynes, A Note on the Total Domination Number of a Tree, J. Combin. Math. Combin. Comput. 58 (2006) 189-193. | Zbl 1114.05071

[003] [4] F. Chung, The average distance is not more than the independence number, J. Graph Theory 12 (1988) 229-235, doi: 10.1002/jgt.3190120213. | Zbl 0644.05029

[004] [5] E. Cockayne, R. Dawes and S. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219, doi: 10.1002/net.3230100304. | Zbl 0447.05039

[005] [6] P. Dankelmann, Average distance and the independence number, Discrete Appl. Math. 51 (1994) 73-83, doi: 10.1016/0166-218X(94)90095-7. | Zbl 0803.05020

[006] [7] P. Dankelmann, Average distance and the domination number, Discrete Appl. Math. 80 (1997) 21-35, doi: 10.1016/S0166-218X(97)00067-X. | Zbl 0888.05024

[007] [8] E. DeLaViña, Q. Liu, R. Pepper, W. Waller and D.B. West, Some Conjectures of Graffiti.pc on Total Domination, Congr. Numer. 185 (2007) 81-95. | Zbl 1134.05070

[008] [9] E. DeLaViña, R. Pepper and W. Waller, A Note on Dominating Sets and Average Distance, Discrete Math. 309 (2009) 2615-2619, doi: 10.1016/j.disc.2008.03.018. | Zbl 1211.05105

[009] [10] A. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees: Theory and applications, Acta Applicandae Mathematicae 66 (2001) 211-249, doi: 10.1023/A:1010767517079. | Zbl 0982.05044

[010] [11] P. Erdös, M. Saks and V. Sós, Maximum Induced Tress in Graphs, J. Graph Theory 41 (1986) 61-79.

[011] [12] S. Fajtlowicz and W. Waller, On two conjectures of Graffiti, Congr. Numer. 55 (1986) 51-56. | Zbl 0639.05040

[012] [13] S. Fajtlowicz, Written on the Wall (manuscript), Web address: http://math.uh.edu/siemion.

[013] [14] S. Fajtlowicz, A Characterization of Radius-Critical Graphs, J. Graph Theory 12 (1988) 529-532, doi: 10.1002/jgt.3190120409. | Zbl 0713.05037

[014] [15] O. Favaron, M. Maheo and J-F. Sacle, Some Results on Conjectures of Graffiti - 1, Ars Combin. 29 (1990) 90-106. | Zbl 0743.05061

[015] [16] M. Garey and D. Johnson, Computers and Intractability, W.H. Freeman and Co. (New York, Bell Telephone Lab., 1979).

[016] [17] P. Hansen, A. Hertz, R. Kilani, O. Marcotte and D. Schindl, Average distance and maximum induced forest, pre-print, 2007. | Zbl 1182.05049

[017] [18] T. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Decker, Inc., NY, 1998). | Zbl 0890.05002

[018] [19] T. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Decker, Inc., NY, 1998). | Zbl 0883.00011

[019] [20] M. Lemańska, Lower Bound on the Domination Number of a Tree, Discuss. Math. Graph Theory 24 (2004) 165-170, doi: 10.7151/dmgt.1222. | Zbl 1063.05035

[020] [21] L. Lovász and M.D. Plummer, Matching Theory (Acedemic Press, New York, 1986).

[021] [22] D.B. West, Open problems column #23, SIAM Activity Group Newsletter in Discrete Mathematics, 1996.

[022] [23] D.B. West, Introduction to Graph Theory (2nd ed.) (Prentice-Hall, NJ, 2001).