We give "if and only if" characterization of graphs with the following property: given n ≥ 3, edges of such graphs form matroids with circuits from the collection of all graphs with n fundamental cycles. In this way we refer to the notion of matroidal family defined by Simões-Pereira [2].
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1505, author = {Renata Kawa}, title = {Graphs for n-circular matroids}, journal = {Discussiones Mathematicae Graph Theory}, volume = {30}, year = {2010}, pages = {437-447}, zbl = {1217.05052}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1505} }
Renata Kawa. Graphs for n-circular matroids. Discussiones Mathematicae Graph Theory, Tome 30 (2010) pp. 437-447. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1505/
[000] [1] H. Whitney, On the abstract properties of linear dependence, Amer. J. Math. 57 (1935) 509-533, doi: 10.2307/2371182. | Zbl 0012.00404
[001] [2] J.M.S. Simões-Pereira, On matroids on edge sets of graphs with connected subgraphs as circuits II, Discrete Math. 12 (1975) 55-78, doi: 10.1016/0012-365X(75)90095-3. | Zbl 0307.05129
[002] [3] J.M.S. Simões-Pereira, Matroidal Families of Graphs, in: N. White (ed.) Matroid Applications (Cambridge University Press, 1992), doi: 10.1017/CBO9780511662041.005. | Zbl 0768.05024
[003] [4] J.G. Oxley, Matroid Theory (Oxford University Press, 1992).
[004] [5] L.R. Matthews, Bicircular matroids, Quart. J. Math. Oxford 28 (1977) 213-228, doi: 10.1093/qmath/28.2.213.
[005] [6] T. Andreae, Matroidal families of finite connected nonhomeomorphic graphs exist, J. Graph Theory 2 (1978) 149-153, doi: 10.1002/jgt.3190020208. | Zbl 0347.05119
[006] [7] R. Schmidt, On the existence of uncountably many matroidal families, Discrete Math. 27 (1979) 93-97, doi: 10.1016/0012-365X(79)90072-4. | Zbl 0427.05024
[007] [8] J.L. Gross and J. Yellen, Handbook of Graph Theory (CRC Press, 2004). | Zbl 1036.05001