Let G = (V,E) be a graph. Set D ⊆ V(G) is a total outer-connected dominating set of G if D is a total dominating set in G and G[V(G)-D] is connected. The total outer-connected domination number of G, denoted by , is the smallest cardinality of a total outer-connected dominating set of G. We show that if T is a tree of order n, then . Moreover, we constructively characterize the family of extremal trees T of order n achieving this lower bound.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1500, author = {Joanna Cyman}, title = {Total outer-connected domination in trees}, journal = {Discussiones Mathematicae Graph Theory}, volume = {30}, year = {2010}, pages = {377-383}, zbl = {1217.05059}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1500} }
Joanna Cyman. Total outer-connected domination in trees. Discussiones Mathematicae Graph Theory, Tome 30 (2010) pp. 377-383. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1500/
[000] [1] G. Chartrand and L. Leśniak, Graphs & Digraphs (Wadsworth and Brooks/Cole, Monterey, CA, third edition, 1996).
[001] [2] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219, doi: 10.1002/net.3230100304. | Zbl 0447.05039
[002] [3] G.S. Domke, J.H. Hattingh, M.A. Henning and L.R. Markus, Restrained domination in trees, Discrete Math. 211 (2000) 1-9, doi: 10.1016/S0012-365X(99)00036-9. | Zbl 0947.05057
[003] [4] J.H. Hattingh, E. Jonck, E.J. Joubert and A.R. Plummer, Total Restrained Domination in Trees, Discrete Math. 307 (2007) 1643-1650, doi: 10.1016/j.disc.2006.09.014. | Zbl 1132.05044
[004] [5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998). | Zbl 0890.05002
[005] [6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998). | Zbl 0883.00011