The edge C₄ graph of some graph classes
Manju K. Menon ; A. Vijayakumar
Discussiones Mathematicae Graph Theory, Tome 30 (2010), p. 365-375 / Harvested from The Polish Digital Mathematics Library

The edge C₄ graph of a graph G, E₄(G) is a graph whose vertices are the edges of G and two vertices in E₄(G) are adjacent if the corresponding edges in G are either incident or are opposite edges of some C₄. In this paper, we show that there exist infinitely many pairs of non isomorphic graphs whose edge C₄ graphs are isomorphic. We study the relationship between the diameter, radius and domination number of G and those of E₄(G). It is shown that for any graph G without isolated vertices, there exists a super graph H such that C(H) = G and C(E₄(H)) = E₄(G). Also we give forbidden subgraph characterizations for E₄(G) being a threshold graph, block graph, geodetic graph and weakly geodetic graph.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:270807
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1499,
     author = {Manju K. Menon and A. Vijayakumar},
     title = {The edge C4 graph of some graph classes},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {30},
     year = {2010},
     pages = {365-375},
     zbl = {1217.05194},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1499}
}
Manju K. Menon; A. Vijayakumar. The edge C₄ graph of some graph classes. Discussiones Mathematicae Graph Theory, Tome 30 (2010) pp. 365-375. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1499/

[000] [1] A. Brandstädt, V.B. Le and J.P. Spinrad, Graph Classes (SIAM, 1999). | Zbl 0919.05001

[001] [2] V. Chvátal and P.L. Hammer, Aggregation of inequalities in integer programming, Ann. Discrete Math. 1 (1997) 145-162.

[002] [3] D.G. Corneil, Y. Perl and I.K. Stewart, A linear recognition algorithm for cographs, SIAM J. Comput. 14 (1985) 926-934, doi: 10.1137/0214065. | Zbl 0575.68065

[003] [4] S. Foldes and P.L. Hammer, The Dilworth number of a graph, Ann. Discrete Math. 2 (1978) 211-219, doi: 10.1016/S0167-5060(08)70334-0. | Zbl 0389.05048

[004] [5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1988). | Zbl 0890.05002

[005] [6] E. Howorka, On metric properties of certain clique graphs, J. Combin. Theory (B) 27 (1979) 67-74, doi: 10.1016/0095-8956(79)90069-8. | Zbl 0337.05138

[006] [7] D.C. Kay and G. Chartrand, A characterization of certain Ptolemic graphs, Canad. J. Math. 17 (1965) 342-346, doi: 10.4153/CJM-1965-034-0. | Zbl 0139.17301

[007] [8] M. Knor, L. Niepel and L. Soltes, Centers in line graphs, Math. Slovaca 43 (1993) 11-20.

[008] [9] M.K. Menon and A. Vijayakumar, The edge C₄ graph of a graph, in: Proc. International Conference on Discrete Math. Ramanujan Math. Soc. Lect. Notes Ser. 7 (2008) 245-248. | Zbl 1202.05116

[009] [10] O. Ore, Theory of Graphs, Amer. Math. Soc. Coll. Publ. 38, (Providence R.I, 1962).

[010] [11] E. Prisner, Graph Dynamics (Longman, 1995). | Zbl 0848.05001

[011] [12] S.B. Rao, A. Lakshmanan and A. Vijayakumar, Cographic and global cographic domination number of a graph, Ars Combin. (to appear). | Zbl 1249.05295

[012] [13] D.B. West, Introduction to Graph Theory (Prentice Hall of India, 2003).