On a family of cubic graphs containing the flower snarks
Jean-Luc Fouquet ; Henri Thuillier ; Jean-Marie Vanherpe
Discussiones Mathematicae Graph Theory, Tome 30 (2010), p. 289-314 / Harvested from The Polish Digital Mathematics Library

We consider cubic graphs formed with k ≥ 2 disjoint claws CiK1,3 (0 ≤ i ≤ k-1) such that for every integer i modulo k the three vertices of degree 1 of Ci are joined to the three vertices of degree 1 of Ci-1 and joined to the three vertices of degree 1 of Ci+1. Denote by ti the vertex of degree 3 of Ci and by T the set t,t,...,tk-1. In such a way we construct three distinct graphs, namely FS(1,k), FS(2,k) and FS(3,k). The graph FS(j,k) (j ∈ 1,2,3) is the graph where the set of vertices i=0i=k-1V(Ci)T induce j cycles (note that the graphs FS(2,2p+1), p ≥ 2, are the flower snarks defined by Isaacs [8]). We determine the number of perfect matchings of every FS(j,k). A cubic graph G is said to be 2-factor hamiltonian if every 2-factor of G is a hamiltonian cycle. We characterize the graphs FS(j,k) that are 2-factor hamiltonian (note that FS(1,3) is the “Triplex Graph” of Robertson, Seymour and Thomas [15]). A strong matching M in a graph G is a matching M such that there is no edge of E(G) connecting any two edges of M. A cubic graph having a perfect matching union of two strong matchings is said to be a Jaeger’s graph. We characterize the graphs FS(j,k) that are Jaeger’s graphs.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:270839
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1495,
     author = {Jean-Luc Fouquet and Henri Thuillier and Jean-Marie Vanherpe},
     title = {On a family of cubic graphs containing the flower snarks},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {30},
     year = {2010},
     pages = {289-314},
     zbl = {1214.05116},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1495}
}
Jean-Luc Fouquet; Henri Thuillier; Jean-Marie Vanherpe. On a family of cubic graphs containing the flower snarks. Discussiones Mathematicae Graph Theory, Tome 30 (2010) pp. 289-314. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1495/

[000] [1] M. Abreu, A.A. Diwan, B. Jackson, D. Labbate and J. Sheehan, Pseudo 2-factor isomorphic regular bipartite graphs, J. Combin. Theory (B) 98 (2008) 432-442, doi: 10.1016/j.jctb.2007.08.006. | Zbl 1134.05079

[001] [2] S. Bonvicini and G. Mazzuoccolo, On perfectly one-factorable cubic graphs, Electronic Notes in Discrete Math. 24 (2006) 47-51, doi: 10.1016/j.endm.2006.06.008. | Zbl 1201.05044

[002] [3] J.-L. Fouquet, H. Thuillier, J.-M. Vanherpe and A.P. Wojda, On linear arboricity of cubic graphs, LIFO Univ. d'Orlans - Research Report 13 (2007) 1-28.

[003] [4] J.-L. Fouquet, H. Thuillier, J.-M. Vanherpe and A.P. Wojda, On isomorphic linear partition in cubic graphs, Discrete Math. 309 (2009) 6425-6433, doi: 10.1016/j.disc.2008.10.017. | Zbl 1218.05130

[004] [5] D.R. Fulkerson, Blocking and anti-blocking pairs of polyhedra, Math. Programming 1 (1971) 168-194, doi: 10.1007/BF01584085. | Zbl 0254.90054

[005] [6] M. Funk, B. Jackson, D. Labbate and J. Sheehan, 2-factor hamiltonian graphs, J. Combin. Theory (B) 87 (2003) 138-144, doi: 10.1016/S0095-8956(02)00031-X. | Zbl 1045.05061

[006] [7] M. Funk and D. Labbate, On minimally one-factorable r-regular bipartite graphs, Discrete Math. 216 (2000) 121-137, doi: 10.1016/S0012-365X(99)00241-1. | Zbl 0952.05055

[007] [8] R. Isaacs, Infinite families of non-trivial trivalent graphs which are not Tait colorable, Am. Math. Monthly 82 (1975) 221-239, doi: 10.2307/2319844. | Zbl 0311.05109

[008] [9] F. Jaeger, Etude de quelques invariants et problèmes d'existence en théorie de graphes (Thèse d'État, IMAG, Grenoble, 1976).

[009] [10] A. Kotzig, Balanced colourings and the four colour conjecture, in: Proc. Sympos. Smolenice, 1963, Publ. House Czechoslovak Acad. Sci. (Prague, 1964) 63-82.

[010] [11] A. Kotzig, Construction for Hamiltonian graphs of degree three (in Russian), Cas. pest. mat. 87 (1962) 148-168.

[011] [12] A. Kotzig and J. Labelle, Quelques problmes ouverts concernant les graphes fortement hamiltoniens, Ann. Sci. Math. Qubec 3 (1979) 95-106. | Zbl 0404.05043

[012] [13] D. Labbate, On 3-cut reductions of minimally 1-factorable cubic bigraphs, Discrete Math. 231 (2001) 303-310, doi: 10.1016/S0012-365X(00)00327-7. | Zbl 0979.05089

[013] [14] D. Labbate, Characterizing minimally 1-factorable r-regular bipartite graphs, Discrete Math. 248 (2002) 109-123, doi: 10.1016/S0012-365X(01)00189-3. | Zbl 0994.05123

[014] [15] N. Robertson and P. Seymour, Excluded minor in cubic graphs, (announced), see also www.math.gatech.edu/thomas/OLDFTP/cubic/graphs.

[015] [16] P. Seymour, On multi-colourings of cubic graphs, and conjectures of Fulkerson and Tutte, Proc. London Math. Soc. 38 (1979) 423-460, doi: 10.1112/plms/s3-38.3.423. | Zbl 0411.05037