Random procedures for dominating sets in bipartite graphs
Sarah Artmann ; Jochen Harant
Discussiones Mathematicae Graph Theory, Tome 30 (2010), p. 277-288 / Harvested from The Polish Digital Mathematics Library

Using multilinear functions and random procedures, new upper bounds on the domination number of a bipartite graph in terms of the cardinalities and the minimum degrees of the two colour classes are established.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:270924
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1494,
     author = {Sarah Artmann and Jochen Harant},
     title = {Random procedures for dominating sets in bipartite graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {30},
     year = {2010},
     pages = {277-288},
     zbl = {1214.05099},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1494}
}
Sarah Artmann; Jochen Harant. Random procedures for dominating sets in bipartite graphs. Discussiones Mathematicae Graph Theory, Tome 30 (2010) pp. 277-288. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1494/

[000] [1] N. Alon and J. Spencer, The Probabilistic Method (John Wiley and Sons, Inc., 1992). | Zbl 0767.05001

[001] [2] V.I. Arnautov, Estimation of the exterior stability number of a graph by means of the minimal degree of the vertices, (Russian), Prikl. Mat. Programm. 11 (1974) 3-8.

[002] [3] S. Artmann, F. Göring, J. Harant, D. Rautenbach and I. Schiermeyer, Random procedures for dominating sets in graphs, submitted. | Zbl 1230.05222

[003] [4] Y. Caro, New results on the independence number (Technical Report. Tel-Aviv University, 1979).

[004] [5] Y. Caro and Y. Roditty, On the vertex-independence number and star decomposition of graphs, Ars Combin. 20 (1985) 167-180. | Zbl 0623.05031

[005] [6] Y. Caro and Y. Roditty, A note on the k-domination number of a graph, Internat. J. Math. Sci. 13 (1990) 205-206, doi: 10.1155/S016117129000031X. | Zbl 0706.05033

[006] [7] G.J. Chang and G.L. Nemhauser, The k-domination and k-stability problems in sun-free chordal graphs, SIAM J. Algebraic Discrete Methods 5 (1984) 332-345, doi: 10.1137/0605034. | Zbl 0576.05054

[007] [8] F. Göring and J. Harant, On domination in graphs, Discuss. Math. Graph Theory 25 (2005) 7-12, doi: 10.7151/dmgt.1254. | Zbl 1077.05075

[008] [9] J. Harant and A. Pruchnewski, A note on the domination number of a bipartite graph, Ann. Combin. 5 (2001) 175-178, doi: 10.1007/PL00001298. | Zbl 0987.05078

[009] [10] J. Harant, A. Pruchnewski, and M. Voigt, On dominating sets and independendent sets of graphs, Combin. Prob. Comput. 8 (1999) 547-553, doi: 10.1017/S0963548399004034. | Zbl 0959.05080

[010] [11] J. Harant and D. Rautenbach, Domination in bipartite graphs, Discrete Math. 309 (2009) 113-122, doi: 10.1016/j.disc.2007.12.051. | Zbl 1181.05069

[011] [12] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs (Marcel Dekker, Inc., New York, 1998). | Zbl 0890.05002

[012] [13] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs Advanced Topics (Marcel Dekker, Inc., New York, 1998). | Zbl 0883.00011

[013] [14] C. Payan, Sur le nombre d'absorption d'un graphe simple, (French), Cah. Cent. Étud. Rech. Opér. 17 (1975) 307-317. | Zbl 0341.05126

[014] [15] V.K. Wei, A lower bound on the stability number of a simple graph, Bell Laboratories Technical Memorandum 81-11217-9 (Murray Hill, NJ, 1981).