Nordhaus-Gaddum results for weakly convex domination number of a graph G are studied.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1491, author = {Magdalena Lema\'nska}, title = {Nordhaus-Gaddum results for weakly convex domination number of a graph}, journal = {Discussiones Mathematicae Graph Theory}, volume = {30}, year = {2010}, pages = {257-263}, zbl = {1214.05008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1491} }
Magdalena Lemańska. Nordhaus-Gaddum results for weakly convex domination number of a graph. Discussiones Mathematicae Graph Theory, Tome 30 (2010) pp. 257-263. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1491/
[000] [1] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., 1998). | Zbl 0890.05002
[001] [2] S.T. Hedetniemi and R. Laskar, Connected domination in graphs, in: B. Bollobás (ed.), Graph Theory and Combinatorics (Academic Press, London, 1984) 209-218. | Zbl 0548.05055
[002] [3] F. Jaegar and C. Payan, Relations du type Nordhaus-Gaddum pour le nombre d'absorption d'un graphe simple, Compt. Rend. Acad. Sci. Paris 274 (1972) 728-730. | Zbl 0226.05121
[003] [4] E.A. Nordhaus and J.W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956) 175-177, doi: 10.2307/2306658. | Zbl 0070.18503