Let γ(G) and denote the domination number and (2,2)-domination number of a graph G, respectively. In this paper, for any nontrivial tree T, we show that . Moreover, we characterize all the trees achieving the equalities.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1486, author = {You Lu and Xinmin Hou and Jun-Ming Xu}, title = {On the (2,2)-domination number of trees}, journal = {Discussiones Mathematicae Graph Theory}, volume = {30}, year = {2010}, pages = {185-199}, zbl = {1214.05107}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1486} }
You Lu; Xinmin Hou; Jun-Ming Xu. On the (2,2)-domination number of trees. Discussiones Mathematicae Graph Theory, Tome 30 (2010) pp. 185-199. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1486/
[000] [1] T.J. Bean, M.A. Henning and H.C. Swart, On the integrity of distance domination in graphs, Australas. J. Combin. 10 (1994) 29-43. | Zbl 0815.05036
[001] [2] G. Chartrant and L. Lesniak, Graphs & Digraphs (third ed., Chapman & Hall, London, 1996).
[002] [3] M. Fischermann and L. Volkmann, A remark on a conjecture for the (k,p)-domination number, Utilitas Math. 67 (2005) 223-227. | Zbl 1077.05074
[003] [4] M.A. Henning, Trees with large total domination number, Utilitas Math. 60 (2001) 99-106. | Zbl 1011.05045
[004] [5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (New York, Marcel Deliker, 1998). | Zbl 0890.05002
[005] [6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (New York, Marcel Deliker, 1998). | Zbl 0883.00011
[006] [7] T. Korneffel, D. Meierling and L. Volkmann, A remark on the (2,2)-domination number Discuss. Math. Graph Theory 28 (2008) 361-366, doi: 10.7151/dmgt.1411. | Zbl 1156.05044