On multiset colorings of graphs
Futaba Okamoto ; Ebrahim Salehi ; Ping Zhang
Discussiones Mathematicae Graph Theory, Tome 30 (2010), p. 137-153 / Harvested from The Polish Digital Mathematics Library

A vertex coloring of a graph G is a multiset coloring if the multisets of colors of the neighbors of every two adjacent vertices are different. The minimum k for which G has a multiset k-coloring is the multiset chromatic number χₘ(G) of G. For every graph G, χₘ(G) is bounded above by its chromatic number χ(G). The multiset chromatic numbers of regular graphs are investigated. It is shown that for every pair k, r of integers with 2 ≤ k ≤ r - 1, there exists an r-regular graph with multiset chromatic number k. It is also shown that for every positive integer N, there is an r-regular graph G such that χ(G) - χₘ(G) = N. In particular, it is shown that χₘ(Kₙ × K₂) is asymptotically √n. In fact, χ(K×K)=χ(cor(Kn+1)). The corona cor(G) of a graph G is the graph obtained from G by adding, for each vertex v in G, a new vertex v’ and the edge vv’. It is shown that χₘ(cor(G)) ≤ χₘ(G) for every nontrivial connected graph G. The multiset chromatic numbers of the corona of all complete graphs are determined. On Multiset Colorings of Graphs From this, it follows that for every positive integer N, there exists a graph G such that χₘ(G) - χₘ(cor(G)) ≥ N. The result obtained on the multiset chromatic number of the corona of complete graphs is then extended to the corona of all regular complete multipartite graphs.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:270936
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1483,
     author = {Futaba Okamoto and Ebrahim Salehi and Ping Zhang},
     title = {On multiset colorings of graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {30},
     year = {2010},
     pages = {137-153},
     zbl = {1214.05030},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1483}
}
Futaba Okamoto; Ebrahim Salehi; Ping Zhang. On multiset colorings of graphs. Discussiones Mathematicae Graph Theory, Tome 30 (2010) pp. 137-153. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1483/

[000] [1] L. Addario-Berry, R.E.L. Aldred, K. Dalal and B.A. Reed, Vertex colouring edge partitions, J. Combin. Theory (B) 94 (2005) 237-244, doi: 10.1016/j.jctb.2005.01.001. | Zbl 1074.05031

[001] [2] M. Anderson, C. Barrientos, R.C. Brigham, J.R. Carrington, M. Kronman, R.P. Vitray and J. Yellen, Irregular colorings of some graph classes, Bull. Inst. Combin. Appl., to appear. | Zbl 1177.05035

[002] [3] R.L. Brooks, On coloring the nodes of a network, Proc. Cambridge Philos. Soc. 37 (1941) 194-197, doi: 10.1017/S030500410002168X. | Zbl 0027.26403

[003] [4] A.C. Burris, On graphs with irregular coloring number 2, Congr. Numer. 100 (1994) 129-140. | Zbl 0836.05029

[004] [5] G. Chartrand, H. Escuadro, F. Okamoto and P. Zhang, Detectable colorings of graphs, Util. Math. 69 (2006) 13-32. | Zbl 1102.05020

[005] [6] G. Chartrand, L. Lesniak, D.W. VanderJagt and P. Zhang, Recognizable colorings of graphs, Discuss. Math. Graph Theory 28 (2008) 35-57, doi: 10.7151/dmgt.1390. | Zbl 1235.05049

[006] [7] G. Chartrand, F. Okamoto, E. Salehi and P. Zhang, The multiset chromatic number of a graph, Math. Bohem. 134 (2009) 191-209. | Zbl 1212.05071

[007] [8] G. Chartrand and P. Zhang, Chromatic Graph Theory (Chapman & Hall/CRC Press, Boca Raton, FL, 2009). | Zbl 1169.05001

[008] [9] H. Escuadro, F. Okamoto and P. Zhang, A three-color problem in graph theory, Bull. Inst. Combin. Appl. 52 (2008) 65-82. | Zbl 1146.05022

[009] [10] M. Karoński, T. Łuczak and A. Thomason, Edge weights and vertex colours, J. Combin. Theory (B) 91 (2004) 151-157, doi: 10.1016/j.jctb.2003.12.001. | Zbl 1042.05045

[010] [11] M. Radcliffe and P. Zhang, Irregular colorings of graphs, Bull. Inst. Combin. Appl. 49 (2007) 41-59. | Zbl 1119.05047