A note on cyclic chromatic number
Jana Zlámalová
Discussiones Mathematicae Graph Theory, Tome 30 (2010), p. 115-122 / Harvested from The Polish Digital Mathematics Library

A cyclic colouring of a graph G embedded in a surface is a vertex colouring of G in which any two distinct vertices sharing a face receive distinct colours. The cyclic chromatic number χc(G) of G is the smallest number of colours in a cyclic colouring of G. Plummer and Toft in 1987 conjectured that χc(G)Δ*+2 for any 3-connected plane graph G with maximum face degree Δ*. It is known that the conjecture holds true for Δ* ≤ 4 and Δ* ≥ 18. The validity of the conjecture is proved in the paper for some special classes of planar graphs.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:270892
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1481,
     author = {Jana Zl\'amalov\'a},
     title = {A note on cyclic chromatic number},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {30},
     year = {2010},
     pages = {115-122},
     zbl = {1214.05036},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1481}
}
Jana Zlámalová. A note on cyclic chromatic number. Discussiones Mathematicae Graph Theory, Tome 30 (2010) pp. 115-122. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1481/

[000] [1] K. Ando, H. Enomoto and A. Saito, Contractible edges in 3-connected graphs, J. Combin. Theory (B) 42 (1987) 87-93, doi: 10.1016/0095-8956(87)90065-7. | Zbl 0611.05037

[001] [2] O.V. Borodin, Solution of Ringel's problem on vertex-face coloring of plane graphs and coloring of 1-planar graphs (Russian), Met. Diskr. Anal. 41 (1984) 12-26. | Zbl 0565.05027

[002] [3] H. Enomoto and M. Hornák, A general upper bound for the cyclic chromatic number of 3-connected plane graphs, J. Graph Theory 62 (2009) 1-25, doi: 10.1002/jgt.20383. | Zbl 1190.05052

[003] [4] H. Enomoto, M. Hornák and S. Jendrol', Cyclic chromatic number of 3-connected plane graphs, SIAM J. Discrete Math. 14 (2001) 121-137, doi: 10.1137/S0895480198346150.

[004] [5] M. Hornák and S. Jendrol', On a conjecture by Plummer and Toft, J. Graph Theory 30 (1999) 177-189, doi: 10.1002/(SICI)1097-0118(199903)30:3<177::AID-JGT3>3.0.CO;2-K

[005] [6] M. Hornák and J. Zlámalová, Another step towards proving a conjecture by Plummer and Toft, Discrete Math. 310 (2010) 442-452, doi: 10.1016/j.disc.2009.03.016. | Zbl 1185.05060

[006] [7] A. Morita, Cyclic chromatic number of 3-connected plane graphs (Japanese, M.S. Thesis), Keio University, Yokohama 1998.

[007] [8] M.D. Plummer and B. Toft, Cyclic coloration of 3-polytopes, J. Graph Theory 11 (1987) 507-515, doi: 10.1002/jgt.3190110407. | Zbl 0655.05030

[008] [9] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932) 150-168, doi: 10.2307/2371086. | Zbl 58.0609.01