In the PhD thesis by Burris (Memphis (1993)), a conjecture was made concerning the number of colors c(G) required to edge-color a simple graph G so that no two distinct vertices are incident to the same multiset of colors. We find the exact value of c(G) - the irregular coloring number, and hence verify the conjecture when G is a vertex-disjoint union of paths. We also investigate the point-distinguishing chromatic index, χ₀(G), where sets, instead of multisets, are required to be distinct, and determine its value for the same family of graphs.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1479, author = {Sylwia Cichacz and Jakub Przyby\l o}, title = {Vertex-distinguishing edge-colorings of linear forests}, journal = {Discussiones Mathematicae Graph Theory}, volume = {30}, year = {2010}, pages = {95-103}, zbl = {1215.05058}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1479} }
Sylwia Cichacz; Jakub Przybyło. Vertex-distinguishing edge-colorings of linear forests. Discussiones Mathematicae Graph Theory, Tome 30 (2010) pp. 95-103. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1479/
[000] [1] M. Aigner and E. Triesch, Irregular assignments and two problems á la Ringel, in: Topics in Combinatorics and Graph Theory, dedicated to G. Ringel, Bodendiek, Henn, eds. (Physica Verlag Heidelberg, 1990) 29-36.
[001] [2] P.N. Balister, Packing Circuits into Kₙ, Combin. Probab. Comput. 10 (2001) 463-499, doi: 10.1017/S0963548301004771. | Zbl 1113.05309
[002] [3] P.N. Balister, B. Bollobás and R.H. Schelp, Vertex-distinguishing edge-colorings of graphs with Δ(G) = 2, Discrete Math. 252 (2002) 17-29, doi: 10.1016/S0012-365X(01)00287-4. | Zbl 1005.05019
[003] [4] A.C. Burris, Vertex-distinguishing edge-colorings (PhD Thesis, Memphis, 1993).
[004] [5] A.C. Burris and R.H. Schelp, Vertex-distiguishing proper edge-colorings, J. Graph Theory 26 (1997) 73-82, doi: 10.1002/(SICI)1097-0118(199710)26:2<73::AID-JGT2>3.0.CO;2-C | Zbl 0886.05068
[005] [6] J. Cerný, M. Hornák and R. Soták, Observability of a graph, Math. Slovaca 46 (1996) 21-31. | Zbl 0853.05040
[006] [7] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular Networks, Congressus Numerantium 64 (1988) 187-192.
[007] [8] S. Cichacz, J. Przybyło and M. Woźniak, Decompositions of pseudographs into closed trails of even sizes, Discrete Math. 309 (2009) 4903-4908, doi: 10.1016/j.disc.2008.04.024. | Zbl 1218.05123
[008] [9] S. Cichacz, J. Przybyło and M. Woźniak, Irregular edge-colorings of sums of cycles of even lengths, Australas. J. Combin. 40 (2008) 41-56. | Zbl 1143.05024
[009] [10] F. Harary and M. Plantholt, The point-distinguishing chromatic index, in: Graphs and Applications, Proc. 1st Symp. Graph Theory, Boulder/Colo. 1982, (1985) 147-162.