The signless Laplacian spectral radius of graphs with given number of cut vertices
Lin Cui ; Yi-Zheng Fan
Discussiones Mathematicae Graph Theory, Tome 30 (2010), p. 85-93 / Harvested from The Polish Digital Mathematics Library

In this paper, we determine the graph with maximal signless Laplacian spectral radius among all connected graphs with fixed order and given number of cut vertices.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:270860
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1478,
     author = {Lin Cui and Yi-Zheng Fan},
     title = {The signless Laplacian spectral radius of graphs with given number of cut vertices},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {30},
     year = {2010},
     pages = {85-93},
     zbl = {1215.05101},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1478}
}
Lin Cui; Yi-Zheng Fan. The signless Laplacian spectral radius of graphs with given number of cut vertices. Discussiones Mathematicae Graph Theory, Tome 30 (2010) pp. 85-93. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1478/

[000] [1] W.N. Anderson and T.D. Morely, Eigenvalues of the Laplacian of a graph, Linear Multilinear Algebra 18 (1985) 141-145, doi: 10.1080/03081088508817681.

[001] [2] A. Berman and X.-D. Zhang, On the spectral radius of graphs with cut vertices, J. Combin. Theory (B) 83 (2001) 233-240, doi: 10.1006/jctb.2001.2052. | Zbl 1023.05098

[002] [3] D. Cvetković, M. Doob and H. Sachs, Spectra of graphs, (third ed., Johann Ambrosius Barth Verlag, Heidelberg-Leipzig, 1995).

[003] [4] D. Cvetković, Signless Laplacians and line graphs, Bull. Acad. Serbe Sci. Ars. Cl. Sci. Math. Nat. Sci. Math. 131 (30) (2005) 85-92. | Zbl 1119.05066

[004] [5] D. Cvetković, P. Rowlinson and S.K. Simić, Signless Laplacians of finite graphs, Linear Algebra Appl. 423 (2007) 155-171, doi: 10.1016/j.laa.2007.01.009. | Zbl 1113.05061

[005] [6] E.R. van Dam and W. Haemers, Which graphs are determined by their spectrum? Linear Algebra Appl. 373 (2003) 241-272, doi: 10.1016/S0024-3795(03)00483-X. | Zbl 1026.05079

[006] [7] M. Desai and V. Rao, A characterization of the smallest eigenvalue of a graph, J. Graph Theory 18 (1994) 181-194, doi: 10.1002/jgt.3190180210. | Zbl 0792.05096

[007] [8] Y.-Z. Fan, B.-S. Tam and J. Zhou, Maximizing spectral radius of unoriented Laplacian matrix over bicyclic graphs of a given order, Linear Multilinear Algebra 56 (2008) 381-397, doi: 10.1080/03081080701306589. | Zbl 1146.05032

[008] [9] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973) 298-305.

[009] [10] R. Grone and R. Merris, The Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl. 11 (1990) 218-238, doi: 10.1137/0611016. | Zbl 0733.05060

[010] [11] J.W. Grossman, D.M. Kulkarni and I. Schochetman, Algebraic graph theory without orientation, Linear Algebra Appl. 212/213 (1994) 289-307, doi: 10.1016/0024-3795(94)90407-3. | Zbl 0817.05047

[011] [12] W. Haemer and E. Spence, Enumeration of cospectral graphs, Europ. J. Combin. 25 (2004) 199-211, doi: 10.1016/S0195-6698(03)00100-8. | Zbl 1033.05070

[012] [13] Q. Li and K.-Q. Feng, On the largest eigenvalues of graphs, (in Chinese), Acta Math. Appl. Sin. 2 (1979) 167-175.

[013] [14] R. Merris, Laplacian matrices of graphs: A survey, Linear Algebra Appl. 197/198 (1994) 143-176, doi: 10.1016/0024-3795(94)90486-3. | Zbl 0802.05053

[014] [15] B. Mohar, Some applications of Laplacian eigenvalues of graphs, in: Graph Symmetry (G. Hahn and G. Sabidussi Eds), (Kluwer Academic Publishers, Dordrecht, 1997), 225-275. | Zbl 0883.05096

[015] [16] B.-S. Tam, Y.-Z. Fan and J. Zhou, Unoriented Laplacian maximizing graphs are degree maximal, Linear Algebra Appl. 429 (2008) 735-758, doi: 10.1016/j.laa.2008.04.002. | Zbl 1149.05034

[016] [17] Shangwang Tan and Xingke Wang, On the largest eigenvalue of signless Laplacian matrix of a graph, Journal of Mathematical Reserch and Exposion 29 (2009) 381-390. | Zbl 1212.05164

[017] [18] X.-D. Zhang and R. Luo, The Laplacian eigenvalues of a mixed graph, Linear Algebra Appl. 362 (2003) 109-119, doi: 10.1016/S0024-3795(02)00509-8. | Zbl 1017.05078