For a nontrivial connected graph G = (V(G),E(G)), a set S⊆ V(G) is called an edge geodetic set of G if every edge of G is contained in a geodesic joining some pair of vertices in S. The edge geodetic number g₁(G) of G is the minimum order of its edge geodetic sets. Bounds for the edge geodetic number of Cartesian product graphs are proved and improved upper bounds are determined for a special class of graphs. Exact values of the edge geodetic number of Cartesian product are obtained for several classes of graphs. Also we obtain a necessary condition of G for which g₁(G ☐ K₂) = g₁(G).
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1476, author = {A.P. Santhakumaran and S.V. Ullas Chandran}, title = {The edge geodetic number and Cartesian product of graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {30}, year = {2010}, pages = {55-73}, zbl = {1215.05049}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1476} }
A.P. Santhakumaran; S.V. Ullas Chandran. The edge geodetic number and Cartesian product of graphs. Discussiones Mathematicae Graph Theory, Tome 30 (2010) pp. 55-73. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1476/
[000] [1] B. Bresar, S. Klavžar and A.T. Horvat, On the geodetic number and related metric sets in Cartesian product graphs, (2007), Discrete Math. 308 (2008) 5555-5561, doi: 10.1016/j.disc.2007.10.007. | Zbl 1200.05060
[001] [2] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley, Redwood City, CA, 1990). | Zbl 0688.05017
[002] [3] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks 39 (2002) 1-6, doi: 10.1002/net.10007. | Zbl 0987.05047
[003] [4] G. Chartrand and P. Zhang, Introduction to Graph Theory (Tata McGraw-Hill Edition, New Delhi, 2006).
[004] [5] F. Harary, E. Loukakis and C. Tsouros, The geodetic number of a graph, Math. Comput. Modeling 17 (1993) 89-95, doi: 10.1016/0895-7177(93)90259-2. | Zbl 0825.68490
[005] [6] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (Wiley-Interscience, New York, 2000).
[006] [7] A.P. Santhakumaran and J. John, Edge geodetic number of a graph, J. Discrete Math. Sciences & Cryptography 10 (2007) 415-432. | Zbl 1133.05028