Bounds on the global offensive k-alliance number in graphs
Mustapha Chellali ; Teresa W. Haynes ; Bert Randerath ; Lutz Volkmann
Discussiones Mathematicae Graph Theory, Tome 29 (2009), p. 597-613 / Harvested from The Polish Digital Mathematics Library

Let G = (V(G),E(G)) be a graph, and let k ≥ 1 be an integer. A set S ⊆ V(G) is called a global offensive k-alliance if |N(v)∩S| ≥ |N(v)-S|+k for every v ∈ V(G)-S, where N(v) is the neighborhood of v. The global offensive k-alliance number γk(G) is the minimum cardinality of a global offensive k-alliance in G. We present different bounds on γk(G) in terms of order, maximum degree, independence number, chromatic number and minimum degree.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:270797
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1467,
     author = {Mustapha Chellali and Teresa W. Haynes and Bert Randerath and Lutz Volkmann},
     title = {Bounds on the global offensive k-alliance number in graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {29},
     year = {2009},
     pages = {597-613},
     zbl = {1194.05115},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1467}
}
Mustapha Chellali; Teresa W. Haynes; Bert Randerath; Lutz Volkmann. Bounds on the global offensive k-alliance number in graphs. Discussiones Mathematicae Graph Theory, Tome 29 (2009) pp. 597-613. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1467/

[000] [1] M. Blidia, M. Chellali and O. Favaron, Independence and 2-domination in trees, Australas. J. Combin. 33 (2005) 317-327.

[001] [2] M. Blidia, M. Chellali and L. Volkmann, Some bounds on the p-domintion number in trees, Discrete Math. 306 (2006) 2031-2037, doi: 10.1016/j.disc.2006.04.010. | Zbl 1100.05069

[002] [3] R.L. Brooks, On colouring the nodes of a network, Proc. Cambridge Philos. Soc. 37 (1941) 194-197, doi: 10.1017/S030500410002168X. | Zbl 0027.26403

[003] [4] M. Chellali, Offensive alliances in bipartite graphs, J. Combin. Math. Combin. Comput., to appear. | Zbl 1198.05119

[004] [5] O. Favaron, G. Fricke, W. Goddard, S.M. Hedetniemi, S.T. Hedetniemi, P. Kristiansen, R.C. Laskar and D.R. Skaggs, Offensive alliances in graphs, Dicuss. Math. Graph Theory 24 (2004) 263-275, doi: 10.7151/dmgt.1230. | Zbl 1064.05112

[005] [6] O. Favaron, A. Hansberg and L. Volkmann, On k-domination and minimum degree in graphs, J. Graph Theory 57 (2008) 33-40, doi: 10.1002/jgt.20279. | Zbl 1211.05110

[006] [7] H. Fernau, J.A. Rodríguez and J.M. Sigarreta, Offensive r-alliance in graphs, Discrete Appl. Math. 157 (2009) 177-182, doi: 10.1016/j.dam.2008.06.001. | Zbl 1200.05157

[007] [8] J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, On graphs having domination number half their order, Period. Math. Hungar. 16 (1985) 287-293, doi: 10.1007/BF01848079. | Zbl 0602.05043

[008] [9] J. Fujisawa, A. Hansberg, T. Kubo, A. Saito, M. Sugita and L. Volkmann, Independence and 2-domination in bipartite graphs, Australas. J. Combin. 40 (2008) 265-268. | Zbl 1147.05052

[009] [10] A. Hansberg, D. Meierling and L. Volkmann, Independence and p-domination in graphs, submitted. | Zbl 1210.05096

[010] [11] P. Kristiansen, S. M. Hedetniemi and S. T. Hedetniemi, Alliances in graphs, J. Combin. Math. Combin. Comput. 48 (2004) 157-177. | Zbl 1051.05068

[011] [12] O. Ore, Theory of Graphs (Amer. Math. Soc. Colloq. Publ. 38, 1962).

[012] [13] C. Payan and N.H. Xuong, Domination-balanced graphs, J. Graph Theory 6 (1982) 23-32, doi: 10.1002/jgt.3190060104. | Zbl 0489.05049

[013] [14] K. H. Shafique and R.D. Dutton, Maximum alliance-free and minimum alliance-cover sets, Congr. Numer. 162 (2003) 139-146. | Zbl 1046.05060

[014] [15] K. H. Shafique and R.D. Dutton, A tight bound on the cardinalities of maximum alliance-free and minimum alliance-cover sets, J. Combin. Math. Combin. Comput. 56 (2006) 139-145. | Zbl 1103.05068