Let us call a graph G(H;k) vertex stable if it contains a subgraph H after removing any of its k vertices. In this paper we are interested in finding the (respectively ) vertex stable graphs with minimum size.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1465, author = {Aneta Dudek and Ma\l gorzata Zwonek}, title = {(H,k) stable bipartite graphs with minimum size}, journal = {Discussiones Mathematicae Graph Theory}, volume = {29}, year = {2009}, pages = {573-581}, zbl = {1193.05095}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1465} }
Aneta Dudek; Małgorzata Zwonek. (H,k) stable bipartite graphs with minimum size. Discussiones Mathematicae Graph Theory, Tome 29 (2009) pp. 573-581. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1465/
[000] [1] A. Dudek, A. Szymański and M. Zwonek, (H,k) stable graphs with minimum size, Discuss. Math. Graph Theory 28 (2008) 137-149, doi: 10.7151/dmgt.1397. | Zbl 1152.05035
[001] [2] P. Frankl and G.Y. Katona, Extremal k-edge-hamiltonian hypergraphs, Discrete Math. 308 (2008) 1415-1424, doi: 10.1016/j.disc.2007.07.074. | Zbl 1137.05051
[002] [3] I. Horváth and G.Y. Katona, Extremal stable graphs, submitted. | Zbl 1228.05187