We propose the following problem. For some k ≥ 1, a graph G is to be properly edge coloured such that any two adjacent vertices share at most k colours. We call this the k-intersection edge colouring. The minimum number of colours sufficient to guarantee such a colouring is the k-intersection chromatic index and is denoted χ’ₖ(G). Let fₖ be defined by . We show that fₖ(Δ) = Θ(Δ²/k). We also discuss some open problems.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1456, author = {Rahul Muthu and N. Narayanan and C.R. Subramanian}, title = {On k-intersection edge colourings}, journal = {Discussiones Mathematicae Graph Theory}, volume = {29}, year = {2009}, pages = {411-418}, zbl = {1194.05042}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1456} }
Rahul Muthu; N. Narayanan; C.R. Subramanian. On k-intersection edge colourings. Discussiones Mathematicae Graph Theory, Tome 29 (2009) pp. 411-418. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1456/
[000] [1] N. Alon and B. Mohar, Chromatic number of graph powers, Combinatorics Probability and Computing 11 (2002) 1-10, doi: 10.1017/S0963548301004965. | Zbl 0991.05042
[001] [2] N. Alon and J. Spencer, The Probabilistic Method (John Wiley, 2000). | Zbl 0996.05001
[002] [3] A.C. Burris and R.H. Schelp, Vertex-distinguishing proper edge colourings, J. Graph Theory 26 (1997) 70-82, doi: 10.1002/(SICI)1097-0118(199710)26:2<73::AID-JGT2>3.0.CO;2-C | Zbl 0886.05068
[003] [4] P. Erdös and L. Lovász, Problems and results on 3-chromatic hypergraphs and some related questions, in: Infinite and Finite Sets, 1975.
[004] [5] S.T. McCormick, Optimal approximation of sparse Hessians and its equivalence to a graph colouring problem, Mathematical Programming 26 (1983) 153-171, doi: 10.1007/BF02592052. | Zbl 0507.65027
[005] [6] M. Molloy and B. Reed, Graph Coloring and the Probabilistic Method (Springer, Algorithms and Combinatorics, 2002).
[006] [7] R. Motwani and P. Raghavan, Randomized Algorithms (Cambridge University Press, 1995). | Zbl 0849.68039
[007] [8] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Metody Diskret. Analys. (1964) 25-30.