On đť“•-independence in graphs
Frank Göring ; Jochen Harant ; Dieter Rautenbach ; Ingo Schiermeyer
Discussiones Mathematicae Graph Theory, Tome 29 (2009), p. 377-383 / Harvested from The Polish Digital Mathematics Library

Let be a set of graphs and for a graph G let α(G) and α*(G) denote the maximum order of an induced subgraph of G which does not contain a graph in as a subgraph and which does not contain a graph in as an induced subgraph, respectively. Lower bounds on α(G) and α*(G) are presented.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:270163
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1453,
     author = {Frank G\"oring and Jochen Harant and Dieter Rautenbach and Ingo Schiermeyer},
     title = {On F-independence in graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {29},
     year = {2009},
     pages = {377-383},
     zbl = {1194.05116},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1453}
}
Frank Göring; Jochen Harant; Dieter Rautenbach; Ingo Schiermeyer. On 𝓕-independence in graphs. Discussiones Mathematicae Graph Theory, Tome 29 (2009) pp. 377-383. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1453/

[000] [1] N. Alon and J.H. Spencer, The probablilistic method (2nd ed.), (Wiley, 2000), doi: 10.1002/0471722154.

[001] [2] R. Boliac, C. Cameron and V. Lozin, On computing the dissociation number and the induced matching number of bipartite graphs, Ars Combin. 72 (2004) 241-253. | Zbl 1075.05066

[002] [3] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, Survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037. | Zbl 0902.05026

[003] [4] M. Borowiecki, D. Michalak and E. Sidorowicz, Generalized domination, independence and irredudance in graphs, Discuss. Math. Graph Theory 17 (1997) 147-153, doi: 10.7151/dmgt.1048. | Zbl 0904.05045

[004] [5] Y. Caro, New results on the independence number, Technical Report (Tel-Aviv University, 1979).

[005] [6] Y. Caro and Y. Roditty, On the vertex-independence number and star decomposition of graphs, Ars Combin. 20 (1985) 167-180. | Zbl 0623.05031

[006] [7] G. Chartrand, D. Geller and S. Hedetniemi, Graphs with forbiden subgraphs, J. Combin. Theory 10 (1971) 12-41, doi: 10.1016/0095-8956(71)90065-7. | Zbl 0223.05101

[007] [8] G. Chartrand and L. Lesniak, Graphs and Digraphs (Chapman & Hall, 2005). | Zbl 1057.05001

[008] [9] M.R. Garey and D.S. Johnson, Computers and Intractability (W.H. Freeman and Company, San Francisco, 1979).

[009] [10] J. Harant, A. Pruchnewski and M. Voigt, On Dominating Sets and Independendent Sets of Graphs, Combinatorics, Probability and Computing 8 (1999) 547-553, doi: 10.1017/S0963548399004034. | Zbl 0959.05080

[010] [11] S. Hedetniemi, On hereditary properties of graphs, J. Combin. Theory (B) 14 (1973) 349-354, doi: 10.1016/S0095-8956(73)80009-7.

[011] [12] V. Vadim and D. de Werra, Special issue on stability in graphs and related topics, Discrete Appl. Math. 132 (2003) 1-2, doi: 10.1016/S0166-218X(03)00385-8. | Zbl 1028.01503

[012] [13] Zs. Tuza, Lecture at Conference of Hereditarnia (Zakopane, Poland, September 2006).

[013] [14] V.K. Wei, A lower bound on the stability number of a simple graph, Bell Laboratories Technical Memorandum 81-11217-9 (Murray Hill, NJ, 1981).