We call the digraph D an m-coloured digraph if the arcs of D are coloured with m colours. A directed path is called monochromatic if all of its arcs are coloured alike. A set N of vertices of D is called a kernel by monochromatic paths if for every pair of vertices of N there is no monochromatic path between them and for every vertex v ∉ N there is a monochromatic path from v to N. We denote by A⁺(u) the set of arcs of D that have u as the initial vertex. We prove that if D is an m-coloured 3-quasitransitive digraph such that for every vertex u of D, A⁺(u) is monochromatic and D satisfies some colouring conditions over one subdigraph of D of order 3 and two subdigraphs of D of order 4, then D has a kernel by monochromatic paths.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1450, author = {Hortensia Galeana-S\'anchez and R. Rojas-Monroy and B. Zavala}, title = {Monochromatic paths and monochromatic sets of arcs in 3-quasitransitive digraphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {29}, year = {2009}, pages = {337-347}, zbl = {1193.05078}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1450} }
Hortensia Galeana-Sánchez; R. Rojas-Monroy; B. Zavala. Monochromatic paths and monochromatic sets of arcs in 3-quasitransitive digraphs. Discussiones Mathematicae Graph Theory, Tome 29 (2009) pp. 337-347. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1450/
[000] [1] J. Bang-Jensen and J. Huang, Quasi-transitive digraphs, J. Graph Theory 20 (1995) 141-161, doi: 10.1002/jgt.3190200205. | Zbl 0832.05048
[001] [2] J. Bang-Jensen and J. Huang, Kings in quasi-transitive digraphs, Discrete Math. 185 (1998) 19-27, doi: 10.1016/S0012-365X(97)00179-9. | Zbl 0955.05048
[002] [3] C. Berge, Graphs (North Holland, Amsterdam, New York, 1985).
[003] [4] P. Duchet, Graphes noyau-parfaits, Ann. Discrete Math. 9 (1980) 93-101, doi: 10.1016/S0167-5060(08)70041-4.
[004] [5] P. Duchet, Classical Perfect Graphs, An introduction with emphasis on triangulated and interval graphs, Ann. Discrete Math. 21 (1984) 67-96. | Zbl 0558.05038
[005] [6] P. Duchet and H. Meyniel, A note on kernel-critical graphs, Discrete Math. 33 (1981) 103-105, doi: 10.1016/0012-365X(81)90264-8. | Zbl 0456.05032
[006] [7] H. Galeana-Sánchez, On monochromatic paths and monochromatic cycles in edge coloured tournaments, Discrete Math. 156 (1996) 103-112, doi: 10.1016/0012-365X(95)00036-V. | Zbl 0857.05054
[007] [8] H. Galeana-Sánchez, Kernels in edge coloured digraphs, Discrete Math. 184 (1998) 87-99, doi: 10.1016/S0012-365X(97)00162-3. | Zbl 0958.05061
[008] [9] H. Galena-Sánchez and V. Neumann-Lara, On kernels and semikernels of digraphs, Discrete Math. 48 (1984) 67-76, doi: 10.1016/0012-365X(84)90131-6. | Zbl 0529.05024
[009] [10] H. Galeana-Sánchez and V. Neumann-Lara, On kernel-perfect critical digraphs, Discrete Math. 59 (1986) 257-265, doi: 10.1016/0012-365X(86)90172-X. | Zbl 0593.05034
[010] [11] H. Galeana-Sánchez, R. Rojas-Monroy and B. Zavala, Monochromatic paths and monochromatic sets of arcs in quasi-transitive digraphs, submitted. | Zbl 1217.05089
[011] [12] Ghouilá-Houri, Caractérisation des graphes non orientés dont on peut orienter les aretes de maniére à obtenir le graphe d'une relation d'ordre, C.R. Acad. Sci. Paris 254 (1962) 1370-1371. | Zbl 0105.35503
[012] [13] S. Minggang, On monochromatic paths in m-coloured tournaments, J. Combin. Theory (B) 45 (1988) 108-111, doi: 10.1016/0095-8956(88)90059-7. | Zbl 0654.05033
[013] [14] M. Richardson, Solutions of irreflexive relations, Ann. Math. 58 (1953) 573, doi: 10.2307/1969755. | Zbl 0053.02902
[014] [15] M. Richardson, Extensions theorems for solutions of irreflexive relations, Proc. Nat. Acad. Sci. USA 39 (1953) 649, doi: 10.1073/pnas.39.7.649. | Zbl 0053.02903
[015] [16] B. Sands, N. Sauer and R. Woodrow, On monochromatic paths in edge-coloured digraphs, J. Combin. Theory (B) 33 (1982) 271-275, doi: 10.1016/0095-8956(82)90047-8. | Zbl 0488.05036