On odd and semi-odd linear partitions of cubic graphs
Jean-Luc Fouquet ; Henri Thuillier ; Jean-Marie Vanherpe ; Adam P. Wojda
Discussiones Mathematicae Graph Theory, Tome 29 (2009), p. 275-292 / Harvested from The Polish Digital Mathematics Library

A linear forest is a graph whose connected components are chordless paths. A linear partition of a graph G is a partition of its edge set into linear forests and la(G) is the minimum number of linear forests in a linear partition. In this paper we consider linear partitions of cubic simple graphs for which it is well known that la(G) = 2. A linear partition L=(LB,LR) is said to be odd whenever each path of LBLR has odd length and semi-odd whenever each path of LB (or each path of LR) has odd length. In [2] Aldred and Wormald showed that a cubic graph G is 3-edge colourable if and only if G has an odd linear partition. We give here more precise results and we study moreover relationships between semi-odd linear partitions and perfect matchings.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:270469
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1447,
     author = {Jean-Luc Fouquet and Henri Thuillier and Jean-Marie Vanherpe and Adam P. Wojda},
     title = {On odd and semi-odd linear partitions of cubic graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {29},
     year = {2009},
     pages = {275-292},
     zbl = {1193.05130},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1447}
}
Jean-Luc Fouquet; Henri Thuillier; Jean-Marie Vanherpe; Adam P. Wojda. On odd and semi-odd linear partitions of cubic graphs. Discussiones Mathematicae Graph Theory, Tome 29 (2009) pp. 275-292. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1447/

[000] [1] J. Akiyama, G. Exoo and F. Harary, Covering and packing in graphs III, Cyclic and Acyclic Invariant, Math. Slovaca 30 (1980) 405-417. | Zbl 0458.05050

[001] [2] R.E.L. Aldred and N.C. Wormald, More on the linear k-arboricity of regular graphs, Australas. J. Combin. 18 (1998) 97-104. | Zbl 0930.05075

[002] [3] J.C. Bermond, J.L. Fouquet, M. Habib and B. Peroche, On linear k-arboricity, Discrete Math. 52 (1984) 123-132, doi: 10.1016/0012-365X(84)90075-X. | Zbl 0556.05054

[003] [4] J.A. Bondy, Balanced colourings and the four color conjecture, Proc. Am. Math. Soc. 33 (1972) 241-244, doi: 10.1090/S0002-9939-1972-0294173-4. | Zbl 0238.05107

[004] [5] M. Habib and B. Peroche, La k-arboricité linéaire des arbres, Annals of Discrete Math. 17 (1983) 307-317. | Zbl 0523.05025

[005] [6] F. Harary, Covering and Packing in graphs I, Ann. New York Acad. Sci. 175 (1970) 198-205, doi: 10.1111/j.1749-6632.1970.tb56470.x. | Zbl 0226.05119

[006] [7] I. Holyer, The NP-completeness of edge coloring, SIAM J. Comput. 10 (1981) 718-720, doi: 10.1137/0210055. | Zbl 0473.68034

[007] [8] F. Jaeger, Etude de quelques invariants et problèmes d'existence en théorie des graphes, Thèse d'Etat, IMAG Grenoble, 1976. Proc 10th Ann. Symp. on Theory of Computing (1978) 216-226.

[008] [9] C. Thomassen, Two-coloring the edges of a cubic graph such that each monochromatic component is a path of length at most 5, J. Combin. Theory (B) 75 (1999) 100-109, doi: 10.1006/jctb.1998.1868.

[009] [10] V.G. Vizing, On an estimate of the chromatic class of p-graph, Diskrete Analiz 3 (1964) 25-30.