We give the multicolor Ramsey number for some graphs with a path or a cycle in the given sequence, generalizing a results of Faudree and Schelp [4], and Dzido, Kubale and Piwakowski [2,3].
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1442, author = {Halina Bielak}, title = {Multicolor Ramsey numbers for some paths and cycles}, journal = {Discussiones Mathematicae Graph Theory}, volume = {29}, year = {2009}, pages = {209-218}, zbl = {1194.05105}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1442} }
Halina Bielak. Multicolor Ramsey numbers for some paths and cycles. Discussiones Mathematicae Graph Theory, Tome 29 (2009) pp. 209-218. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1442/
[000] [1] S. Brandt, A sufficient condition for all short cycles, Discrete Appl. Math. 79 (1997) 63-66, doi: 10.1016/S0166-218X(97)00032-2. | Zbl 0882.05081
[001] [2] T. Dzido, Multicolor Ramsey numbers for paths and cycles, Discuss. Math. Graph. Theory 25 (2005) 57-65, doi: 10.7151/dmgt.1260. | Zbl 1075.05055
[002] [3] T. Dzido, M. Kubale and K. Piwakowski, On some Ramsey and Turán-type numbers for paths and cycles, Electr. J. Combin. 13 (2006) R55. | Zbl 1098.05054
[003] [4] R.J. Faudree and R.H. Schelp, Path Ramsey numbers in multicolorngs, J. Combin. Theory (B) 19 (1975) 150-160, doi: 10.1016/0095-8956(75)90080-5. | Zbl 0286.05111
[004] [5] A. Figaj and T. Łuczak, The Ramsey number for a triple of long even cycles, J. Combin. Theory (B) 97 (2007) 584-596, doi: 10.1016/j.jctb.2006.09.001. | Zbl 1120.05060
[005] [6] Y. Kohayakawa, M. Simonovits and J. Skokan, The 3-colored Ramsey numbers of odd cycles, Electr. Notes Discrete Math. 19 (2005) 397-402, doi: 10.1016/j.endm.2005.05.053. | Zbl 1203.05100
[006] [7] D.R. Woodall, Maximal circuits of graphs I, Acta Math. Acad. Sci. Hungar. 28 (1976) 77-80, doi: 10.1007/BF01902497. | Zbl 0337.05128