A note on k-uniform self-complementary hypergraphs of given order
Artur Szymański ; A. Paweł Wojda
Discussiones Mathematicae Graph Theory, Tome 29 (2009), p. 199-202 / Harvested from The Polish Digital Mathematics Library

We prove that a k-uniform self-complementary hypergraph of order n exists, if and only if nk is even.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:270314
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1440,
     author = {Artur Szyma\'nski and A. Pawe\l\ Wojda},
     title = {A note on k-uniform self-complementary hypergraphs of given order},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {29},
     year = {2009},
     pages = {199-202},
     zbl = {1189.05119},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1440}
}
Artur Szymański; A. Paweł Wojda. A note on k-uniform self-complementary hypergraphs of given order. Discussiones Mathematicae Graph Theory, Tome 29 (2009) pp. 199-202. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1440/

[000] [1] J.W.L. Glaisher, On the residue of a binomial coefficient with respect to a prime modulus, Quarterly Journal of Mathematics 30 (1899) 150-156. | Zbl 29.0152.03

[001] [2] S.H. Kimball, T.R. Hatcher, J.A. Riley and L. Moser, Solution to problem E1288: Odd binomial coefficients, Amer. Math. Monthly 65 (1958) 368-369, doi: 10.2307/2308812.

[002] [3] W. Kocay, Reconstructing graphs as subsumed graphs of hypergraphs, and some self-complementary triple systems, Graphs Combin. 8 (1992) 259-276, doi: 10.1007/BF02349963. | Zbl 0759.05064

[003] [4] G. Ringel, Selbstkomplementäre Graphen, Arch. Math. 14 (1963) 354-358, doi: 10.1007/BF01234967.

[004] [5] H. Sachs, Über selbstkomplementäre Graphen, Publ. Math. Debrecen 9 (1962) 270-288. | Zbl 0119.18904

[005] [6] A. Szymański, A note on self-complementary 4-uniform hypergraphs, Opuscula Math. 25/2 (2005) 319-323. | Zbl 1122.05067

[006] [7] A.P. Wojda, Self-complementary hypergraphs, Discuss. Math. Graph Theory 26 (2006) 217-224, doi: 10.7151/dmgt.1314. | Zbl 1142.05058