Quasiperfect domination in triangular lattices
Italo J. Dejter
Discussiones Mathematicae Graph Theory, Tome 29 (2009), p. 179-198 / Harvested from The Polish Digital Mathematics Library

A vertex subset S of a graph G is a perfect (resp. quasiperfect) dominating set in G if each vertex v of G∖S is adjacent to only one vertex (dv ∈ 1,2 vertices) of S. Perfect and quasiperfect dominating sets in the regular tessellation graph of Schläfli symbol 3,6 and in its toroidal quotients are investigated, yielding the classification of their perfect dominating sets and most of their quasiperfect dominating sets S with induced components of the form Kν, where ν ∈ 1,2,3 depends only on S.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:270316
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1439,
     author = {Italo J. Dejter},
     title = {Quasiperfect domination in triangular lattices},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {29},
     year = {2009},
     pages = {179-198},
     zbl = {1189.05125},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1439}
}
Italo J. Dejter. Quasiperfect domination in triangular lattices. Discussiones Mathematicae Graph Theory, Tome 29 (2009) pp. 179-198. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1439/

[000] [1] D.W. Bange, A.E. Barkauskas and P.J. Slater, Efficient dominating sets in graphs, Appl. Discrete Math, eds. R.D. Ringeisen and F.S. Roberts (SIAM, Philadelphia, 1988) 189-199. | Zbl 0664.05027

[001] [2] I.J. Dejter, Perfect domination of regular grid graphs, Australasian J. Combin. 92 (2008) 99-114. | Zbl 1153.05042

[002] [3] I.J. Dejter and A.A. Delgado, Perfect dominating sets in grid graphs, JCMCC 70 (2009), to appear. | Zbl 1195.05053

[003] [4] L. Fejes Tóth, Regular Figures (Pergamon Press, Oxford UK, 1964).

[004] [5] J. Kratochvil and M. Krivánek, On the Computational Complexity of Codes in Graphs, in: Proc. MFCS 1988, LNCS 324 (Springer-Verlag), 396-404. | Zbl 0655.68039

[005] [6] C. Thomassen, On the Nelson unit distance coloring problem, Amer. Math. Monthly 106 (1999) 850-853, doi: 10.2307/2589618. | Zbl 0986.05041