Let G = (V,E) be a graph. A set S ⊆ V is a restrained dominating set if every vertex in V-S is adjacent to a vertex in S and to a vertex in V-S. The restrained domination number of G, denoted by , is the minimum cardinality of a restrained dominating set of G. A unicyclic graph is a connected graph that contains precisely one cycle. We show that if U is a unicyclic graph of order n, then , and provide a characterization of graphs achieving this bound.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1433, author = {Johannes H. Hattingh and Ernst J. Joubert and Marc Loizeaux and Andrew R. Plummer and Lucas van der Merwe}, title = {Restrained domination in unicyclic graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {29}, year = {2009}, pages = {71-86}, zbl = {1189.05128}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1433} }
Johannes H. Hattingh; Ernst J. Joubert; Marc Loizeaux; Andrew R. Plummer; Lucas van der Merwe. Restrained domination in unicyclic graphs. Discussiones Mathematicae Graph Theory, Tome 29 (2009) pp. 71-86. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1433/
[000] [1] G. Chartrand and L. Lesniak, Graphs & Digraphs: Fourth Edition (Chapman & Hall, Boca Raton, FL, 2005).
[001] [2] P. Dankelmann, D. Day, J.H. Hattingh, M.A. Henning, L.R. Markus and H.C. Swart, On equality in an upper bound for the restrained and total domination numbers of a graph, to appear in Discrete Math. | Zbl 1138.05049
[002] [3] P. Dankelmann, J.H. Hattingh, M.A. Henning and H.C. Swart, Trees with equal domination and restrained domination numbers, J. Global Optim. 34 (2006) 597-607, doi: 10.1007/s10898-005-8565-z. | Zbl 1089.05056
[003] [4] G.S. Domke, J.H. Hattingh, S.T. Hedetniemi and L.R. Markus, Restrained domination in trees, Discrete Math. 211 (2000) 1-9, doi: 10.1016/S0012-365X(99)00036-9. | Zbl 0947.05057
[004] [5] G.S. Domke, J.H. Hattingh, M.A. Henning and L.R. Markus, Restrained domination in graphs with minimum degree two, J. Combin. Math. Combin. Comput. 35 (2000) 239-254. | Zbl 0971.05087
[005] [6] G.S. Domke, J.H. Hattingh, S.T. Hedetniemi, R.C. Laskar and L.R. Markus, Restrained domination in graphs, Discrete Math. 203 (1999) 61-69, doi: 10.1016/S0012-365X(99)00016-3. | Zbl 1114.05303
[006] [7] J.H. Hattingh and M.A. Henning, Restrained domination excellent trees, Ars Combin. 87 (2008) 337-351. | Zbl 1224.05367
[007] [8] J.H. Hattingh, E. Jonck, E. J. Joubert and A.R. Plummer, Nordhaus-Gaddum results for restrained domination and total restrained domination in graphs, Discrete Math. 308 (2008) 1080-1087, doi: 10.1016/j.disc.2007.03.061. | Zbl 1134.05072
[008] [9] J.H. Hattingh and A.R. Plummer, A note on restrained domination in trees, to appear in Ars Combin. | Zbl 1240.05045
[009] [10] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1997). | Zbl 0890.05002
[010] [11] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds), Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1997).
[011] [12] M.A. Henning, Graphs with large restrained domination number, Discrete Math. 197/198 (1999) 415-429, doi: 10.1016/S0012-365X(99)90095-X. | Zbl 0932.05070
[012] [13] B. Zelinka, Remarks on restrained and total restrained domination in graphs, Czechoslovak Math. J. 55 (130) (2005) 393-396, doi: 10.1007/s10587-005-0029-6. | Zbl 1081.05050