Convex independence and the structure of clone-free multipartite tournaments
Darren B. Parker ; Randy F. Westhoff ; Marty J. Wolf
Discussiones Mathematicae Graph Theory, Tome 29 (2009), p. 51-69 / Harvested from The Polish Digital Mathematics Library

We investigate the convex invariants associated with two-path convexity in clone-free multipartite tournaments. Specifically, we explore the relationship between the Helly number, Radon number and rank of such digraphs. The main result is a structural theorem that describes the arc relationships among certain vertices associated with vertices of a given convexly independent set. We use this to prove that the Helly number, Radon number, and rank coincide in any clone-free bipartite tournament. We then study the relationship between Helly independence and Radon independence in clone-free multipartite tournaments. We show that if the rank is at least 4 or the Helly number is at least 3, then the Helly number and the Radon number are equal.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:270650
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1432,
     author = {Darren B. Parker and Randy F. Westhoff and Marty J. Wolf},
     title = {Convex independence and the structure of clone-free multipartite tournaments},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {29},
     year = {2009},
     pages = {51-69},
     zbl = {1213.05117},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1432}
}
Darren B. Parker; Randy F. Westhoff; Marty J. Wolf. Convex independence and the structure of clone-free multipartite tournaments. Discussiones Mathematicae Graph Theory, Tome 29 (2009) pp. 51-69. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1432/

[000] [1] M. Changat and J. Mathew, On triangle path convexity in graphs, Discrete Math. 206 (1999) 91-95, doi: 10.1016/S0012-365X(98)00394-X. | Zbl 0929.05046

[001] [2] G. Chartrand and J.F. Fink and P. Zhang, Convexity in oriented graphs, Discrete Applied Math. 116 (2002) 115-126, doi: 10.1016/S0166-218X(00)00382-6. | Zbl 1001.05050

[002] [3] G. Chartrand and P. Zhang, Convex sets in graphs, Cong. Numer. 136 (1999) 19-32. | Zbl 0967.05031

[003] [4] P. Duchet, Convexity in graphs II. Minimal path convexity, J. Combin. Theory (B) 44 (1988) 307-316, doi: 10.1016/0095-8956(88)90039-1. | Zbl 0672.52001

[004] [5] P. Erdös, E. Fried, A. Hajnal and E.C. Milner, Some remarks on simple tournaments, Algebra Universalis 2 (1972) 238-245, doi: 10.1007/BF02945032. | Zbl 0267.05104

[005] [6] M.G. Everett and S.B. Seidman, The hull number of a graph, Discrete Math. 57 (1985) 217-223, doi: 10.1016/0012-365X(85)90174-8. | Zbl 0584.05044

[006] [7] D.J. Haglin and M.J. Wolf, On convex subsets in tournaments, SIAM Journal on Discrete Mathematics 9 (1996) 63-70, doi: 10.1137/S0895480193251234. | Zbl 0858.05050

[007] [8] F. Harary and J. Nieminen, Convexity in graphs, J. Differential Geometry 16 (1981) 185-190. | Zbl 0493.05037

[008] [9] R.E. Jamison and R. Nowakowski, A Helly theorem for convexity in graphs, Discrete Math. 51 (1984) 35-39, doi: 10.1016/0012-365X(84)90021-9. | Zbl 0548.05052

[009] [10] J.W. Moon, Embedding tournaments in simple tournaments, Discrete Math. 2 (1972) 389-395, doi: 10.1016/0012-365X(72)90016-7. | Zbl 0236.05108

[010] [11] J. Nieminen, On path- and geodesic-convexity in digraphs, Glasnik Matematicki 16 (1981) 193-197. | Zbl 0487.05031

[011] [12] D.B. Parker, R.F. Westhoff and M.J. Wolf, On two-path convexity in multipartite tournaments, European J. Combin. 29 (2008) 641-651, doi: 10.1016/j.ejc.2007.03.009. | Zbl 1141.05039

[012] [13] D.B. Parker, R.F. Westhoff and M.J. Wolf, Two-path convexity in clone-free regular multipartite tournaments, Australas. J. Combin. 36 (2006) 177-196. | Zbl 1109.05047

[013] [14] A. Abueida, W.S. Diestelkamp, S.P. Edwards and D.B. Parker, Determining properties of a multipartite tournament from its lattice of convex subsets, Australas. J. Combin. 31 (2005) 217-230. | Zbl 1064.05066

[014] [15] D.B. Parker, R.F. Westhoff and M.J. Wolf, Two-path convexity and bipartite tournaments of small rank, to appear in Ars Combin. | Zbl 1249.05170

[015] [16] J.L. Pfaltz, Convexity in directed graphs, J. Combin. Theory 10 (1971) 143-152, doi: 10.1016/0095-8956(71)90074-8. | Zbl 0174.26803

[016] [17] N. Polat, A Helly theorem for geodesic convexity in strongly dismantlable graphs, Discrete Math. 140 (1995) 119-127, doi: 10.1016/0012-365X(93)E0178-7. | Zbl 0828.05062

[017] [18] J.C. Varlet, Convexity in Tournaments, Bull. Societe Royale des Sciences de Liege 45 (1976) 570-586. | Zbl 0351.05113

[018] [19] M.L.J van de Vel, Theory of Convex Structures (North Holland, Amsterdam, 1993). | Zbl 0785.52001