In this note we prove that {0,1,√2,√3,2} is the set of all real numbers l such that the following holds: every tree having an eigenvalue which is larger than l has a subtree whose largest eigenvalue is l.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1427, author = {Gurusamy Rengasamy Vijayakumar}, title = {A result related to the largest eigenvalue of a tree}, journal = {Discussiones Mathematicae Graph Theory}, volume = {28}, year = {2008}, pages = {557-561}, zbl = {1173.05032}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1427} }
Gurusamy Rengasamy Vijayakumar. A result related to the largest eigenvalue of a tree. Discussiones Mathematicae Graph Theory, Tome 28 (2008) pp. 557-561. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1427/
[000] [1] M. Doob, A surprising property of the least eigenvalue of a graph, Linear Algebra and Its Applications 46 (1982) 1-7, doi: 10.1016/0024-3795(82)90021-0. | Zbl 0503.05044
[001] [2] C. Godsil and G. Royle, Algebraic Graph Theory (Springer, New York, 2001). | Zbl 0968.05002
[002] [3] P.W.H. Lemmens and J.J. Seidel, Equiangular lines, Journal of Algebra 24 (1973) 494-512, doi: 10.1016/0021-8693(73)90123-3. | Zbl 0255.50005
[003] [4] L. Lovász, Combinatorial Problems and Exercises (North-Holland Publishing Company, Amsterdam, 1979).
[004] [5] A.J. Schwenk, Computing the characteristic polynomial of a graph, in: Graphs and Combinatorics, eds. R.A. Bari and F. Harary, Springer-Verlag, Lecture Notes in Math. 406 (1974) 153-172.
[005] [6] N.M. Singhi and G.R. Vijayakumar, Signed graphs with least eigenvalue < -2, European J. Combin. 13 (1992) 219-220, doi: 10.1016/0195-6698(92)90027-W. | Zbl 0769.05065
[006] [7] J.H. Smith, Some properties of the spectrum of a graph, in: Combinatorial Structures and their Applications, eds. R. Guy, H. Hanani, N. Sauer and J. Schönheim, Gordon and Breach, New York (1970), 403-406.
[007] [8] D.B. West, Introduction to Graph Theory, Second edition (Printice Hall, New Jersey, USA, 2001).