Let G be a graph with vertex set V(G) and edge set E(G). A signed matching is a function x: E(G) → -1,1 satisfying for every v ∈ V(G), where . The maximum of the values of , taken over all signed matchings x, is called the signed matching number and is denoted by β’₁(G). In this paper, we study the complexity of the maximum signed matching problem. We show that a maximum signed matching can be found in strongly polynomial-time. We present sharp upper and lower bounds on β’₁(G) for general graphs. We investigate the sum of maximum size of signed matchings and minimum size of signed 1-edge covers. We disprove the existence of an analogue of Gallai’s theorem. Exact values of β’₁(G) of several classes of graphs are found.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1421, author = {Changping Wang}, title = {The signed matchings in graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {28}, year = {2008}, pages = {477-486}, zbl = {1175.05114}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1421} }
Changping Wang. The signed matchings in graphs. Discussiones Mathematicae Graph Theory, Tome 28 (2008) pp. 477-486. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1421/
[000] [1] R.P. Anstee, A polynomial algorithm for b-matchings: an alternative approach, Inform. Process. Lett. 24 (1987) 153-157, doi: 10.1016/0020-0190(87)90178-5.
[001] [2] A. Bonato, K. Cameron and C. Wang, Signed b-edge covers of graphs, submitted.
[002] [3] G. Chartrand and L. Lesniak, Graphs & Digraphs, third edition (Chapman and Hall, Boca Raton, 2000).
[003] [4] W. Chena and E. Song, Lower bounds on several versions of signed domination number, Discrete Math. 308 (2008) 1837-1846, doi: 10.1016/j.disc.2006.09.050. | Zbl 1168.05343
[004] [5] S. Goodman, S. Hedetniemi and R.E. Tarjan, b-matchings in trees, SIAM J. Comput. 5 (1976) 104-108, doi: 10.1137/0205009. | Zbl 0324.05002
[005] [6] D. Hausmann, Adjacent vertices on the b-matching polyhedron, Discrete Math. 33 (1981) 37-51, doi: 10.1016/0012-365X(81)90256-9. | Zbl 0469.05053
[006] [7] H. Karami, S.M. Sheikholeslami and A. Khodkar, Some notes on signed edge domination in graphs, Graphs and Combin. 24 (2008) 29-35, doi: 10.1007/s00373-007-0762-8. | Zbl 1138.05052
[007] [8] W.R. Pulleyblank, Total dual integrality and b-matchings, Oper. Res. Lett. 1 (1981/82) 28-33, doi: 10.1016/0167-6377(81)90021-3. | Zbl 0491.90068
[008] [9] A. Schrijver, Combinatorial Optimization: polyhedra and efficiency (Berlin, Springer, 2004). | Zbl 1072.90030
[009] [10] C. Wang, The signed star domination numbers of the Cartesian product graphs, Discrete Appl. Math. 155 (2007) 1497-1505, doi: 10.1016/j.dam.2007.04.008. | Zbl 1119.05085
[010] [11] B. Xu, On signed edge domination numbers of graphs, Discrete Math. 239 (2001) 179-189, doi: 10.1016/S0012-365X(01)00044-9. | Zbl 0979.05081
[011] [12] B. Xu, Note On edge domination numbers of graphs, Discrete Math. 294 (2005) 311-316, doi: 10.1016/j.disc.2004.11.008. | Zbl 1062.05116
[012] [13] B. Xu, Two classes of edge domination in graphs, Discrete Appl. Math. 154 (2006) 1541-1546, doi: 10.1016/j.dam.2005.12.007. | Zbl 1091.05055