We inductively describe an embedding of a complete ternary tree Tₕ of height h into a hypercube Q of dimension at most ⎡(1.6)h⎤+1 with load 1, dilation 2, node congestion 2 and edge congestion 2. This is an improvement over the known embedding of Tₕ into Q. And it is very close to a conjectured embedding of Havel [3] which states that there exists an embedding of Tₕ into its optimal hypercube with load 1 and dilation 2. The optimal hypercube has dimension ⎡(log₂3)h⎤ ( = ⎡(1.585)h⎤) or ⎡(log₂3)h⎤+1.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1420, author = {S.A. Choudum and S. Lavanya}, title = {Embedding complete ternary trees into hypercubes}, journal = {Discussiones Mathematicae Graph Theory}, volume = {28}, year = {2008}, pages = {463-476}, zbl = {1173.05013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1420} }
S.A. Choudum; S. Lavanya. Embedding complete ternary trees into hypercubes. Discussiones Mathematicae Graph Theory, Tome 28 (2008) pp. 463-476. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1420/
[000] [1] S.L. Bezrukov, Embedding complete trees into the hypercube, Discrete Math. 110 (2001) 101-119, doi: 10.1016/S0166-218X(00)00256-0. | Zbl 0980.05022
[001] [2] A.K. Gupta, D. Nelson and H. Wang, Efficient embeddings of ternary trees into hypercubes, Journal of Parallel and Distributed Computing 63 (2003) 619-629, doi: 10.1016/S0743-7315(03)00037-6. | Zbl 1035.68081
[002] [3] I. Havel, On certain trees in hypercube, in: R. Bodendick and R. Henn, eds, Topics in Combinatorics and Graph Theory (Physica-Verlag, Heidelberg, 1990) 353-358. | Zbl 0743.05016
[003] [4] X.J. Shen, Q. Hu and W.F. Liang, Embedding k-ary complete trees into hypercubes, Journal of Parallel and Distributed Computing 24 (1995) 100-106, doi: 10.1006/jpdc.1995.1010.
[004] [5] F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes (Morgan Kauffmann, San Mateo, CA, 1992). | Zbl 0743.68007
[005] [6] B. Monien and H. Sudbourough, Embedding one interconnection network into another, Computing Supplementary 7 (1990) 257-282.
[006] [7] J. Trdlicka and P. Tvrdík, Embedding of k-ary complete trees into hypercubes with uniform load, Journal of Parallel and Distributed Computing 52 (1998) 120-131, doi: 10.1006/jpdc.1998.1464. | Zbl 0911.68078
[007] [8] A.Y. Wu, Embedding of tree networks in hypercube, Journal of Parallel and Distributed Computing 2 (1985) 238-249, doi: 10.1016/0743-7315(85)90026-7.