The bondage number of graphs: good and bad vertices
Vladimir Samodivkin
Discussiones Mathematicae Graph Theory, Tome 28 (2008), p. 453-462 / Harvested from The Polish Digital Mathematics Library

The domination number γ(G) of a graph G is the minimum number of vertices in a set D such that every vertex of the graph is either in D or is adjacent to a member of D. Any dominating set D of a graph G with |D| = γ(G) is called a γ-set of G. A vertex x of a graph G is called: (i) γ-good if x belongs to some γ-set and (ii) γ-bad if x belongs to no γ-set. The bondage number b(G) of a nonempty graph G is the cardinality of a smallest set of edges whose removal from G results in a graph with domination number greater then γ(G). In this paper we present new sharp upper bounds for b(G) in terms of γ-good and γ-bad vertices of G.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:270385
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1419,
     author = {Vladimir Samodivkin},
     title = {The bondage number of graphs: good and bad vertices},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {28},
     year = {2008},
     pages = {453-462},
     zbl = {1173.05037},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1419}
}
Vladimir Samodivkin. The bondage number of graphs: good and bad vertices. Discussiones Mathematicae Graph Theory, Tome 28 (2008) pp. 453-462. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1419/

[000] [1] D.W. Bange, A.E. Barkauskas and P.J. Slater, Efficient Dominating Sets in Graphs, in: R.D. Ringeisen and F.S. Roberts (Eds.), Applications of Discrete Mathematics (SIAM, Philadelphia, PA, 1988) 189-199. | Zbl 0664.05027

[001] [2] D. Bauer, F. Harary, J. Nieminen and C.L. Suffel, Domination alteration sets in graphs, Discrete Math. 47 (1983) 153-161, doi: 10.1016/0012-365X(83)90085-7. | Zbl 0524.05040

[002] [3] R.C. Brigham, P.Z. Chinn and R.D. Dutton, Vertex domination-critical graphs, Networks 18 (1988) 173-179, doi: 10.1002/net.3230180304. | Zbl 0658.05042

[003] [4] J.R. Carrington, F. Harary and T.W. Haynes, Changing and unchanging the domination number of a graph, J. Combin. Math. Combin. Comput. 9 (1991) 57-63. | Zbl 0736.05067

[004] [5] J.E. Dunbar, T.W. Haynes, U. Teschner and L. Volkmann, Bondage, insensitivity and reinforcement, in: T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998) 471-489. | Zbl 0894.05025

[005] [6] J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, The bondage number of a graph, Discrete Math. 86 (1990) 47-57, doi: 10.1016/0012-365X(90)90348-L. | Zbl 0745.05056

[006] [7] G.H. Fricke, T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi and R.C. Laskar, Excellent trees, Bull. Inst. Comb. Appl. 34 (2002) 27-38.

[007] [8] J. Fulman, D. Hanson and G. MacGillivray, Vertex domination-critical graphs, Networks 25 (1995) 41-43, doi: 10.1002/net.3230250203. | Zbl 0820.05038

[008] [9] B.L. Hartnell and D.F. Rall, Bounds on the bondage number of a graph, Discrete Math. 128 (1994) 173-177, doi: 10.1016/0012-365X(94)90111-2. | Zbl 0796.05051

[009] [10] B.L. Hartnell and D.F. Rall, A bound on the size of a graph with given order and bondage number, Discrete Math. 197/198 (1999) 409-413, doi: 10.1016/S0012-365X(99)90093-6. | Zbl 0960.05074

[010] [11] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in graphs (Marcel Dekker, Inc., New York, NY, 1998). | Zbl 0890.05002

[011] [12] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in graphs: Advanced topics (Marcel Dekker, Inc., New York, NY, 1998). | Zbl 0883.00011

[012] [13] Hailong Liu and Liang Sun, The bondage and connectivity of a graph, Discrete Math. 263 (2003) 289-293, doi: 10.1016/S0012-365X(02)00770-7. | Zbl 1014.05050

[013] [14] U. Teschner, A counterexample to a conjecture on the bondage number of a graph, Discrete Math. 122 (1993) 393-395, doi: 10.1016/0012-365X(93)90317-M. | Zbl 0787.05060

[014] [15] U. Teschner, A new upper bound for the bondage number of a graphs with small domination number, Aus. J. Combin. 12 (1995) 27-35. | Zbl 0839.05053

[015] [16] U. Teschner, The bondage number of a graphs G can be much greater than Δ(G), Ars. Combinatoria 43 (1996) 81-87. | Zbl 0881.05062

[016] [17] U. Teschner, New results about the bondage number of a graph, Discrete Math. 171 (1997) 249-259, doi: 10.1016/S0012-365X(96)00007-6. | Zbl 0881.05067

[017] [18] Yue-Li Wang, On the bondage number of a graph, Discrete Math. 159 (1996) 291-294, doi: 10.1016/0012-365X(96)00347-0. | Zbl 0860.05045