On long cycles through four prescribed vertices of a polyhedral graph
Jochen Harant ; Stanislav Jendrol' ; Hansjoachim Walther
Discussiones Mathematicae Graph Theory, Tome 28 (2008), p. 441-451 / Harvested from The Polish Digital Mathematics Library

For a 3-connected planar graph G with circumference c ≥ 44 it is proved that G has a cycle of length at least (1/36)c+(20/3) through any four vertices of G.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:270764
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1418,
     author = {Jochen Harant and Stanislav Jendrol' and Hansjoachim Walther},
     title = {On long cycles through four prescribed vertices of a polyhedral graph},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {28},
     year = {2008},
     pages = {441-451},
     zbl = {1173.05027},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1418}
}
Jochen Harant; Stanislav Jendrol'; Hansjoachim Walther. On long cycles through four prescribed vertices of a polyhedral graph. Discussiones Mathematicae Graph Theory, Tome 28 (2008) pp. 441-451. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1418/

[000] [1] T. Böhme, F. Göring and J. Harant, Menger's theorem, J. Graph Theory 37 (2001) 35-36, doi: 10.1002/jgt.1001. | Zbl 0988.05057

[001] [2] R. Diestel, Graph Theory (Springer, Graduate Texts in Mathematics 173, 2000).

[002] [3] A.K. Kelmans and M.V. Lomonosov, When m vertices in a k-connected graph cannot be walked round along a simple cycle, Discrete Math. 38 (1982) 317-322, doi: 10.1016/0012-365X(82)90299-0. | Zbl 0475.05053

[003] [4] L. Lovász, Combinatorial problems and exercises (Akadémiai Kiadó, Budapest, Hungary 1979) Section 6, Problem 42.

[004] [5] J.W. Moon and L. Moser, Simple paths on polyhedra, Pacific J. Math. 13 (1963) 629-631. | Zbl 0115.41001

[005] [6] A. Saito, Long cycles through specified vertices in a graph, J. Combin. Theory (B) 47 (1989) 220-230, doi: 10.1016/0095-8956(89)90021-X. | Zbl 0686.05031

[006] [7] W.T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82 (1956) 99-116, doi: 10.1090/S0002-9947-1956-0081471-8. | Zbl 0070.18403

[007] [8] W.T. Tutte, Bridges and Hamiltonian circuits in planar graphs, Aequationes Math. 15 (1977) 1-33, doi: 10.1007/BF01837870. | Zbl 0357.05039