Solution to the problem of Kubesa
Mariusz Meszka
Discussiones Mathematicae Graph Theory, Tome 28 (2008), p. 375-378 / Harvested from The Polish Digital Mathematics Library

An infinite family of T-factorizations of complete graphs K2n, where 2n = 56k and k is a positive integer, in which the set of vertices of T can be split into two subsets of the same cardinality such that degree sums of vertices in both subsets are not equal, is presented. The existence of such T-factorizations provides a negative answer to the problem posed by Kubesa.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:270723
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1413,
     author = {Mariusz Meszka},
     title = {Solution to the problem of Kubesa},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {28},
     year = {2008},
     pages = {375-378},
     zbl = {1209.05188},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1413}
}
Mariusz Meszka. Solution to the problem of Kubesa. Discussiones Mathematicae Graph Theory, Tome 28 (2008) pp. 375-378. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1413/

[000] [1] D. Froncek and T. Kovarova, Personal communication, 2004-6.

[001] [2] D. Froncek and M. Kubesa, Problem presented at the Workshop in Krynica 2004, Discuss. Math. Graph Theory 26 (2006) 351.

[002] [3] N.D. Tan, On a problem of Froncek and Kubesa, Australas. J. Combin. 40 (2008) 237-246. | Zbl 1139.05052