An infinite family of T-factorizations of complete graphs , where 2n = 56k and k is a positive integer, in which the set of vertices of T can be split into two subsets of the same cardinality such that degree sums of vertices in both subsets are not equal, is presented. The existence of such T-factorizations provides a negative answer to the problem posed by Kubesa.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1413, author = {Mariusz Meszka}, title = {Solution to the problem of Kubesa}, journal = {Discussiones Mathematicae Graph Theory}, volume = {28}, year = {2008}, pages = {375-378}, zbl = {1209.05188}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1413} }
Mariusz Meszka. Solution to the problem of Kubesa. Discussiones Mathematicae Graph Theory, Tome 28 (2008) pp. 375-378. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1413/
[000] [1] D. Froncek and T. Kovarova, Personal communication, 2004-6.
[001] [2] D. Froncek and M. Kubesa, Problem presented at the Workshop in Krynica 2004, Discuss. Math. Graph Theory 26 (2006) 351.
[002] [3] N.D. Tan, On a problem of Froncek and Kubesa, Australas. J. Combin. 40 (2008) 237-246. | Zbl 1139.05052