Monochromatic paths and quasi-monochromatic cycles in edge-coloured bipartite tournaments
Hortensia Galeana-Sanchez ; Rocío Rojas-Monroy
Discussiones Mathematicae Graph Theory, Tome 28 (2008), p. 285-306 / Harvested from The Polish Digital Mathematics Library

We call the digraph D an m-coloured digraph if the arcs of D are coloured with m colours. A directed path (or a directed cycle) is called monochromatic if all of its arcs are coloured alike. A directed cycle is called quasi-monochromatic if with at most one exception all of its arcs are coloured alike. A set N ⊆ V(D) is said to be a kernel by monochromatic paths if it satisfies the following two conditions: (i) for every pair of different vertices u,v ∈ N there is no monochromatic directed path between them and (ii) for every vertex x ∈ V(D)∖N there is a vertex y ∈ N such that there is an xy-monochromatic directed path. In this paper it is proved that if D is an m-coloured bipartite tournament such that: every directed cycle of length 4 is quasi-monochromatic, every directed cycle of length 6 is monochromatic, and D has no induced particular 6-element bipartite tournament T̃₆, then D has a kernel by monochromatic paths.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:270359
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1406,
     author = {Hortensia Galeana-Sanchez and Roc\'\i o Rojas-Monroy},
     title = {Monochromatic paths and quasi-monochromatic cycles in edge-coloured bipartite tournaments},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {28},
     year = {2008},
     pages = {285-306},
     zbl = {1156.05022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1406}
}
Hortensia Galeana-Sanchez; Rocío Rojas-Monroy. Monochromatic paths and quasi-monochromatic cycles in edge-coloured bipartite tournaments. Discussiones Mathematicae Graph Theory, Tome 28 (2008) pp. 285-306. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1406/

[000] [1] C. Berge, Graphs (North-Holland, Amsterdam, 1985).

[001] [2] P. Duchet, Graphes Noyau-Parfaits, Ann. Discrete Math. 9 (1980) 93-101, doi: 10.1016/S0167-5060(08)70041-4.

[002] [3] P. Duchet and H. Meyniel, A note on kernel-critical graphs, Discrete Math. 33 (1981) 103-105, doi: 10.1016/0012-365X(81)90264-8. | Zbl 0456.05032

[003] [4] H. Galeana-Sánchez and V. Neumann-Lara, On kernels and semikernels of digraphs, Discrete Math. 48 (1984) 67-76, doi: 10.1016/0012-365X(84)90131-6. | Zbl 0529.05024

[004] [5] H. Galeana-Sánchez, On monochromatic paths and monochromatics cycles in edge coloured tournaments, Discrete Math. 156 (1996) 103-112, doi: 10.1016/0012-365X(95)00036-V.

[005] [6] H. Galeana-Sánchez, Kernels in edge-coloured digraphs, Discrete Math. 184 (1998) 87-99, doi: 10.1016/S0012-365X(97)00162-3. | Zbl 0958.05061

[006] [7] H. Galeana-Sánchez and J.J. García-Ruvalcaba, Kernels in the closure of coloured digraphs, Discuss. Math. Graph Theory 20 (2000) 243-254, doi: 10.7151/dmgt.1123. | Zbl 0990.05059

[007] [8] H. Galeana-Sánchez and R. Rojas-Monroy, On monochromatic paths and monochromatic 4-cycles in edge-coloured bipartite tournaments, Discrete Math. 285 (2004) 313-318, doi: 10.1016/j.disc.2004.03.005. | Zbl 1049.05042

[008] [9] H. Galeana-Sánchez and R. Rojas-Monroy, A counterexample to a conjecture on edge-coloured tournaments, Discrete Math. 282 (2004) 275-276, doi: 10.1016/j.disc.2003.11.015. | Zbl 1042.05039

[009] [10] G. Hahn, P. Ille and R. Woodrow, Absorbing sets in arc-coloured tournaments, Discrete Math. 283 (2004) 93-99, doi: 10.1016/j.disc.2003.10.024. | Zbl 1042.05049

[010] [11] M. Richardson, Solutions of irreflexive relations, Ann. Math. 58 (1953) 573, doi: 10.2307/1969755. | Zbl 0053.02902

[011] [12] Shen Minggang, On monochromatic paths in m-coloured tournaments, J. Combin. Theory (B) 45 (1988) 108-111, doi: 10.1016/0095-8956(88)90059-7. | Zbl 0654.05033

[012] [13] B. Sands, N. Sauer and R. Woodrow, On monochromatic paths in edge-coloured digraphs, J. Combin. Theory (B) 33 (1982) 271-275, doi: 10.1016/0095-8956(82)90047-8. | Zbl 0488.05036

[013] [14] J. Von Neumann and O. Morgenstern, Theory of Games and Economic Behavior (Princeton University Press, Princeton, 1944). | Zbl 0063.05930