By h(G,x) and P(G,λ) we denote the adjoint polynomial and the chromatic polynomial of graph G, respectively. A new invariant of graph G, which is the fourth character R₄(G), is given in this paper. Using the properties of the adjoint polynomials, the adjoint equivalence class of graph is determined, which can be regarded as the continuance of the paper written by Wang et al. [J. Wang, R. Liu, C. Ye and Q. Huang, A complete solution to the chromatic equivalence class of graph , Discrete Math. (2007), doi: 10.1016/j.disc.2007.07.030]. According to the relations between h(G,x) and P(G,λ), we also simultaneously determine the chromatic equivalence class of that is the complement of .
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1401, author = {Jianfeng Wang and Qiongxiang Huang and Chengfu Ye and Ruying Liu}, title = {The chromatic equivalence class of graph $\overline{B\_{n-6,1,2}}$ }, journal = {Discussiones Mathematicae Graph Theory}, volume = {28}, year = {2008}, pages = {189-218}, zbl = {1156.05021}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1401} }
Jianfeng Wang; Qiongxiang Huang; Chengfu Ye; Ruying Liu. The chromatic equivalence class of graph $\overline{B_{n-6,1,2}}$ . Discussiones Mathematicae Graph Theory, Tome 28 (2008) pp. 189-218. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1401/
[000] [1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, Amsterdam, 1976). | Zbl 1226.05083
[001] [2] F.M. Dong, K.M. Koh, K.L. Teo, C.H.C. Little and M.D. Hendy, Two invariants for adjointly equivalent graphs, Australasian J. Combin. 25 (2002) 133-143. | Zbl 0993.05067
[002] [3] F.M. Dong, K.L. Teo, C.H.C. Little and M.D. Hendy, Chromaticity of some families of dense graphs, Discrete Math. 258 (2002) 303-321, doi: 10.1016/S0012-365X(02)00355-2. | Zbl 1010.05024
[003] [4] Q.Y. Du, The graph parameter π (G) and the classification of graphs according to it, Acta Sci. Natur. Univ. Neimonggol 26 (1995) 258-262.
[004] [5] B.F. Huo, Relations between three parameters A(G), R(G) and D₂(G) of graph G (in Chinese), J. Qinghai Normal Univ. (Natur. Sci.) 2 (1998) 1-6.
[005] [6] K.M. Koh and K.L. Teo, The search for chromatically unique graphs, Graphs and Combin. 6 (1990) 259-285, doi: 10.1007/BF01787578. | Zbl 0727.05023
[006] [7] K.M. Koh and K.L. Teo, The search for chromatically unique graphs-II, Discrete Math. 172 (1997) 59-78, doi: 10.1016/S0012-365X(96)00269-5. | Zbl 0879.05031
[007] [8] R.Y. Liu, Several results on adjoint polynomials of graphs (in Chinese), J. Qinghai Normal Univ. (Natur. Sci.) 1 (1992) 1-6.
[008] [9] R.Y. Liu, On the irreducible graph (in Chinese), J. Qinghai Normal Univ. (Natur. Sci.) 4 (1993) 29-33.
[009] [10] R.Y. Liu and L.C. Zhao, A new method for proving uniqueness of graphs, Discrete Math. 171 (1997) 169-177, doi: 10.1016/S0012-365X(96)00078-7. | Zbl 0881.05046
[010] [11] R.Y. Liu, Adjoint polynomials and chromatically unique graphs, Discrete Math. 172 (1997) 85-92, doi: 10.1016/S0012-365X(96)00271-3. | Zbl 0878.05030
[011] [12] J.S. Mao, Adjoint uniqueness of two kinds of trees (in Chinese), The thesis for Master Degree (Qinghai Normal University, 2004).
[012] [13] R.C. Read and W.T. Tutte, Chromatic Polynomials, in: L.W. Beineke, R.T. Wilson (Eds), Selected Topics in Graph Theory III (Academiv Press, New York, 1988) 15-42. | Zbl 0667.05022
[013] [14] S.Z. Ren, On the fourth coefficients of adjoint polynomials of some graphs (in Chinese), Pure and Applied Math. 19 (2003) 213-218. | Zbl 1123.05301
[014] [15] J.F. Wang, R.Y. Liu, C.F. Ye and Q.X. Huang, A complete solution to the chromatic equivalence class of graph , Discrete Math. 308 (2008) 3607-3623. | Zbl 1225.05136
[015] [16] C.F. Ye, The roots of adjoint polynomials of the graphs containing triangles, Chin. Quart. J. Math. 19 (2004) 280-285.
[016] [17] H.X. Zhao, Chromaticity and Adjoint Polynomials of Graphs, The thesis for Doctor Degree (University of Twente, 2005). The Netherlands, Wöhrmann Print Service (available at http://purl.org/utwente/50795)