A set D of vertices in a graph G = (V,E) is a weakly connected dominating set of G if D is dominating in G and the subgraph weakly induced by D is connected. The weakly connected domination number of G is the minimum cardinality of a weakly connected dominating set of G. The weakly connected domination subdivision number of a connected graph G is the minimum number of edges that must be subdivided (where each egde can be subdivided at most once) in order to increase the weakly connected domination number. We study the weakly connected domination subdivision numbers of some families of graphs.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1395, author = {Joanna Raczek}, title = {Weakly connected domination subdivision numbers}, journal = {Discussiones Mathematicae Graph Theory}, volume = {28}, year = {2008}, pages = {109-119}, zbl = {1169.05366}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1395} }
Joanna Raczek. Weakly connected domination subdivision numbers. Discussiones Mathematicae Graph Theory, Tome 28 (2008) pp. 109-119. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1395/
[000] [1] G.S. Domke, J.H. Hattingh and L.R. Marcus, On weakly connected domination in graphs II, Discrete Math. 305 (2005) 112-122, doi: 10.1016/j.disc.2005.10.006. | Zbl 1078.05064
[001] [2] J.E. Dunbar, J.W. Grossman, J.H. Hattingh, S.T. Hedetniemi and A.A. McRae, On weakly connected domination in graphs, Discrete Math. 167/168 (1997) 261-269, doi: 10.1016/S0012-365X(96)00233-6. | Zbl 0871.05037
[002] [3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker Inc., New York, 1998). | Zbl 0890.05002
[003] [4] T.W. Haynes, M.A. Henning and L.S. Hopkins, Total domination subdivision numbers of graphs, Discuss. Math. Graph Theory 24 (2003) 457-467, doi: 10.7151/dmgt.1244. | Zbl 1065.05070
[004] [5] J.H. Hattingh, E. Jonck and L.R. Marcus, A note on the weakly connected subdivision number of a graph (2007), to appear.